
An Exploratory Literature Study on Live-Tooling in the Game
Industry (PREPRINT)

Tom Beckmann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

tom.beckmann@hpi.uni-potsdam.de

Christian Flach
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

christian.flach@hpi.uni-potsdam.de

Eva Krebs
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

eva.krebs@hpi.uni-potsdam.de

Stefan Ramson
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

stefan.ramson@hpi.uni-potsdam.de

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

robert.hirschfeld@acm.org

ABSTRACT
The game development industry employs customized tools which
support liveness to enable fast iteration. These tools are used in
sophisticated software development settings and can serve as inspi-
ration for future directions of the field of live programming. At the
same time, game development is a specialized field different from
general application development. To provide starting points for
exploring work on game development tools, we provide general ob-
servations and an overview over ten use cases for tools based on an
exploratory literature study on articles published on Gamasutra and
videos of the Game Developers Conference. Further, we illustrate
how liveness is used in these use cases through example tools and
environments. We discuss the examples with regard to the liveness
levels according to Tanimoto. Finally, we discuss how insights from
these specialized tools can be transferred to tool development for
general software development.

CCS CONCEPTS
• Software and its engineering → Application specific develop-
ment environments.

KEYWORDS
live programming, live coding, exploratory programming, game
development, tools, literature study

ACM Reference Format:
Tom Beckmann, Christian Flach, Eva Krebs, Stefan Ramson, Patrick Rein,
and Robert Hirschfeld. 2019. An Exploratory Literature Study on Live-
Tooling in the Game Industry (PREPRINT). In LIVE’18: Workshop on Live
Programming, October 20–25, 2019, Athens, Greece. ACM, New York, NY,
USA, 6 pages. https://doi.org/XXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LIVE’19, October 20–25, 2019, Athens, Greece
© 2019 Association for Computing Machinery.
ACM ISBN XXX. . . $15.00
https://doi.org/XXX

1 INTRODUCTION
The game development industry can provide inspirations for fu-
ture tool designs and perspectives on liveness. Game development
often happens under tough constraints and has to adhere to strict
deadlines due to promised publishing dates. At the same time the
design space for games is large and quick iteration is necessary
to improve every aspect of the game, including game mechanics,
3D models, animations, artificial intelligence algorithms, or dialog
design [20, p. 89]. To sustain quick iterations despite the tough
constraints, game development teams often create customized tool
sets. To support fast iteration even further, many of these tools
incorporate some form of liveness which allows both programmers
and artists to see the effects of their changes immediately in the
running game.

At the same time, neither the live programming nor the live
coding community has covered these tools and environments thor-
oughly yet [19]. In this paper, we want to provide entry points
for readers wanting to explore how live programming is used in
game development by providing an overview of use cases for game
development tools and example uses of liveness. The overview and
the examples for liveness are the result of an exploratory literature
study based on articles and videos from professional game creators.
We provide an overview of the use cases for game development
tools, as game development is a specialized software development
domain with particular requirements and constraints different from
common software development settings. To understand for which
ends liveness is used, we conducted the literature study with the
research question: Which use cases do game creators have with
regards to their tools when editing and creating games?

To illustrate how liveness is employed in these use cases, we also
provide notable examples of tools and environments we encoun-
tered. We connect these to the live programming perspective on
liveness by discussing their level of liveness according to Tanimoto.

Structure of this Paper. We first describe our methodology of our
exploratory literature study based on the SALSA methodology in
section 2. In section 3 we describe our general observations of the
game development process, the use cases we identified, and exam-
ples for liveness in game development tools. Section 4 discusses the
threats to validity, and future work. Section 5 concludes the paper.

https://doi.org/XXX
https://doi.org/XXX
Robert Hirschfeld
In Proceedings of the Workshop on Live Programming Systems (LIVE) 2019
co-located with the Conference on Systems, Programming, Languages, and Applications: Software for Humanity (SPLASH)
6 pages, Athens, Greece, October 20, 2019

LIVE’19, October 20–25, 2019, Athens, Greece Tom Beckmann, Christian Flach, Eva Krebs, Stefan Ramson, Patrick Rein, and Robert Hirschfeld

2 METHODOLOGY
We conducted our exploratory literature study following the SALSA
(Search, AppraisaL, Synthesis, Analysis) process [9].

2.1 Search
There are only few academic papers on live game development
tools [19]. Therefore, we selected two non-academic sources for
the literature study:

• Gamasutra, a blog and news website about games and game
development [1].

• GDC Vault, the video archive of the Game Developers Con-
ference (GDC) [2].

Gamasutra. We crawled the Gamasutra website https://www.
gamasutra.com recursively, beginning at the startpage.

We selected HTML pages matching these URL patterns:
• https://www.gamasutra.com/blogs/*
• https://www.gamasutra.com/view/*

This resulted in 10 147 articles stretching over 13 709 pages. Each
article consists of title, text, and possibly pictures. Sometimes an
article only consists of a video and a short text, in which case we
treated the video as the document.

GDC Vault. Video recordings of talks given at the Game Develop-
ers Conferences are archived and accessible in the GDC Vault. The
earliest ones are from GDC 1996. Each video recording includes a
title, keywords, speaker, and their company as well as an abstract of
the talk. Access to some of the videos requires a paid membership.
We crawled the titles and abstracts of all 716 freely available talks
of the GDC main conference from 1996 to 2019. We did not crawl
videos of sub conferences like VRDC and GDC Europe.

2.2 Appraisal
Both sources deal with professional game development in general,
which is why we needed to drill down the amount of content. To
do that, we filtered articles and videos by the word “tool”.

Gamasutra. We extracted the article texts and titles from the
HTML pages and only selected articles that included the word
“tool” in either title or text. This process resulted in 2716 remaining
pages. We read all article titles and picked articles that referred to
tool usage or development. 98 articles remained.

GDC Vault. 120 videos contained the word “tool” in their title or
summary. We skimmed through these videos, wrote a one-sentence
summary per video, and assigned one of three categories denoting
how detailed the video dealt with the tool (“high”, “medium”, or
“low”). We removed 72 videos where either no tools were shown,
or only presented very briefly. Of the 48 videos remaining, 7 were
classified as “high”, 9 as “medium”, and 32 as “low”. To determine
usage of liveness, we looked into the 7 videos classified as “high”
in detail.

2.3 Synthesis
We watched/read each of the selected 7 videos and 98 articles and
tagged the presented tool based on the domain it applies to. Exam-
ples include “Network”, “AI” and “Procedural Generation”.

We evaluated what purpose the presented tool serves and which
information needs it fulfills. Purposes we found include: Editing
the level while the game is running, visualizing the underlying
data of a game object, and debugging of AI behavior, whereas
information needs were more general: “What will happen when I
change this value?”, “How does my game behave on a slow network
or hardware?”, and “Why did the dialog end in this state?”. We also
determined whether and how the tool changes a running system.

2.4 Analysis
To extract common use cases, we clustered similar information
needs and purposes we gathered during the synthesis into groups.
We then assigned a title to each group that describes its overall use
case. We noted general observations that did not fit any concrete
use case separately.

To select representative sample tools per liveness level, we anal-
ysed our descriptions of how the tools change a running system, as
well as the assigned domain tags.

3 STUDY RESULTS
In the following, we will first describe our general observations
and their influence on our results. Then we will describe each of
the use cases in detail and point out example tools and relevant
articles/videos. At the end, we will give examples that exhibit char-
acteristics that fit the liveness levels.

3.1 General Observations
Aside from tools for specific use cases and information needs, we
also observed general aspects of the game development process.

In general, big and complex games are usually made by large
teamswith experts from several domains collaborating on one game
project [20]. An artist may have different abilities and requirements
for a tool than a graphics programmer. Also, many tools are created
throughout the development process as the need for them arises.
Sometimes they are also expanded at a later point of development.
Since a lot of tools are created during the development process and
for different audiences, there usually is an explicit tool team that
only works on tools and on improving the tool pipeline for the
game.

While a lot of tools are created, not all should be active at the
same time in the same editor. Instead, often a specific subset is
needed for the current use case of the user. There is also a differ-
ence between tools available in external editors, and tools directly
integrated into the game [8].

In this paper, we intentionally also covered tools that were not
explicitly made for editing source code. Instead, we tried to present
the wide variety of tools that game development teams use to create
the final software artifact. We therefore included many tools tar-
geted at non-programmers. In particular, a recurring theme was to
have programmers work on the actual game for as little as possible
and instead have them focus on engine and tool development for
game performance improvements. At the same time, we also found
many tools specifically targeted at programmers, mostly used for
profiling various aspects of the game, which we decided not to
report on in this survey.

https://www.gamasutra.com
https://www.gamasutra.com
https://www.gamasutra.com/blogs/*
https://www.gamasutra.com/view/*

An Exploratory Literature Study on Live-Tooling in the Game Industry (PREPRINT) LIVE’19, October 20–25, 2019, Athens, Greece

Another observation is that there are high demands in terms
of performance and iteration times to get the game to “feel right”.
Because of this demand, most designs that we observed were using
a data-driven approach. A first step towards this is to simply isolate
all magic numbers, such as movement speed or damage, into sepa-
rate files, thereby making the tuning of these numbers a matter of
changing data instead of a matter or programming. Other cases may
even allow defining entire class hierarchies or complex expressions
in external files that are loaded and evaluated at runtime.

This allows artists and also programmers to make quick changes,
often in a declarative manner, without the need to recompile large
parts of the project. Making a change and testing that change in
the game is done continuously and thus should happen quickly [4].
Fast iteration cycles are needed both when quickly iterating on
prototypes in the beginning of a project and also when tuning a
specific aspect of a game.

3.2 Use Cases of Game Development Tools
The first research question is: Which use cases do game creators
have with regards to their tools when editing and creating games?
During the analysis of the dataset, we found ten use case clusters.
Even within these use case clusters, there are differences on which
temporal dimensions they focus. One of them is concerned with
the future, i.e., the consequences of actions, two deal with the past
or history of the game’s behavior and the rest is about interacting
with and altering the present.

Replay / Edit (Past). This use case is about tools that record
both interactions made by the user as well as events and behavior
triggered by the game. The recording allows to automatically replay
the game in exactly the same way again, an example tool for which
can be seen in Figure 4. In contrast to a video, this allows developers
to inspect and alter the game state at any point in time, which is
useful for debugging purposes [14]. The replay can also be used
by game designers to adjust gameplay mechanics, by replaying
the same sequence multiple times with different configurations
(e.g., adjusting the gravity of a level). Recording the past can be
used to create viewable example solutions. In addition it is also
possible to replay only a part of the recording and then resume
normal gameplay to try new interactions, which could be used by
developers and players alike.

For example, a replay mechanic was created for a strategy game
originally as a debugging helper for programmer and was later
turned into a game mechanic for players [10].

Problem Reporting (Past). There are several ways to make report-
ing problems as helpful as possible for the programmers fixing the
problem as well as to enable the reporting player to report as fast as
possible after discovering the problem so none are forgotten. One
key component to solving a problem usually is the ability to repro-
duce it, which can be achieved by enhancing textual reports with
automatically collected data about what happened. Errors or bugs
may occur only in very specific conditions (e.g., the 3D model only
glitches at one part of the level at a certain angle), which means
easy reproduction of the conditions is very important to solving the
problems. For example, a recording made with a tool that supports

Figure 1: Path visualization of a non-player entity in “Hori-
zon Zero Dawn”. The enemy entity will move along the path
in the direction indicated by the arrows.

replay like described in the previous paragraph allows to exactly
replicate the problem.

Another way to enhance problem reports can be found in Google
Stadia [21]. In the shown tool, all gameplay is recorded as a video.
When a problem occurs, the reporting player sends a written de-
scription and an automatically created short video including the
last few seconds before the problem, the moment of the problem
itself, and a few seconds after the problem occurred.

See the Future. Thereweremany articles contemplating tools that
predict future game behavior, but nearly none about implemented
future-indicating tools. While some approaches in that direction
exist [26], many times such tools were just wished for.

One implemented tool, as can be seen in Figure 1, shows the
future actions taken by non-player entities (e.g. the path taken by
an AI).

Edit Piece of Data. Most games consist of a lot of data whose
values also define the game behaviour, like the objects a game
level consists of or global data like a gravity value. There are many
specialized tools to edit the game’s data and see the changes as fast
as possible, sometimes live while the game is played, an example
for which can be seen in Figure 4.

An example editor with many editing related features is the
“Valve Hammer Editor” [25]. The editor shows the edited object
from several different angles and thus allows to edit data throughout
multiple different views.

Level Creation and Debugging. A commonly game-related use
case is level creation and debugging. A game often has specific
level creation tools (e.g., a terrain painting tool to change stone into
grass). Game developers often want to quickly test changes made
to the level by playing the level.

One example tool is the level editor made for “Horizon Zero
Dawn” [5]. The tool allows seamless switching between terrain
editing and gameplay. The game designer can then determine by
playing whether the changes fit artistically, whether the gameplay
still works and "feels" correct, and whether new bugs occur due to
the change.

LIVE’19, October 20–25, 2019, Athens, Greece Tom Beckmann, Christian Flach, Eva Krebs, Stefan Ramson, Patrick Rein, and Robert Hirschfeld

Figure 2: A view on electricity supply and usage in “SimCity
(2013)”. Houses are connected to the power net and act as
electricity sinks, visualized by yellow circles.

Make the Invisible Visible. Many games work with values that are
usually hidden from the the player. For debugging purposes, it may
be helpful to make the hidden values visible within the running
game. Showing the values in-game helps connecting them to other
visible game behavior. This can be done through methods such as
color highlighting or overlay text.

“SimCity(2013)” has several ways to view normally hidden val-
ues [15]. Some of these were later changed from development tools
into player-facing game mechanics, e.g., to view the electricity
supply and usage of a town, as seen in Figure 2.

Make the Visible Invisible. Most games are a graphical medium
with a lot of visuals. Sometimes normally visible elements need to
be hidden to make it easier to track relevant objects. This can be
combined with the previous use case of making hidden elements
visible, creating context-views that only show very specific infor-
mation.

The in-game views in city-building games like “SimCity(2013)” or
“City Skylines” also support this by removing color from currently
unimportant objects or hiding their 3D models completely [15].
While the mechanic was originally created during development
for “SimCity(2013)”, the release version of the games also has such
views usable by players.

AI / Behavior Debugging. Games with complex behavior and AI
often use specialized debugging tools. These tools enable a better
understanding of the AI/behavior state by providing abstractions,
such as tree view visualizations and diagrams to evaluate logs. It is
often required to playtest changes after implementing them.

A very sophisticated AI debugging tool was used to implement
the AI in Hitman [16]. It records a timeline for every character,
including all decisions and behaviors that led to the current behavior
and location of the character. It is possible to jump back and forth
in the timeline of the character and see what they were looking at
and interacting with at any point in time.

Hardware Emulation. Games are oftenmade for several platforms
and hardware configurations. Especially multiplayer games also
highly depend on the network connection. In order to test whether

the game works on all hardware configurations and whether it func-
tions as expected, hardware can be simulated instead of physically
reproduced.

An example tool for network emulation is built into Google
Stadia [21]. Since it is a purely cloud-based gaming service, the
network connection is a key part of the user experience. The tool
allows to simulate different network speeds and errors, effectively
changing the environment the game is running in, to determine its
behavior when the environment changes.

Interaction between Art and Game. Games combine visual, nar-
rative, and other artistic elements. Tools need to make externally
created asset integration and adjustments of game behavior as fast
and easy as possible. This encompasses a variety of use cases such
as configuring 3D models, procedurally creating assets, and dialog
editors.

For example, Polsinelli shows an approach to edit a dialog tree
that combines art (text and graphics) with the game mechanic (the
dialog) [17].

3.3 Examples of Tools Classified by Liveness
Level

In this section, wewill give detailed examples of tools by Tanimoto’s
liveness levels [22, 23]. The system that exhibits the liveness level is
not always the game, but can also be an editor, acting on a specific
asset or part of the game.While this makes the comparison between
individual tools difficult, it will illustrate the range of applications
used during the game development process more accurately.

3.3.1 Liveness Level 2. Tools that deal with program flow, but re-
quire to be manually executed are considered to have liveness level
2. We found various examples where C++ was used as the language
to write both, the engine and game, mostly for performance reasons.
Due to the necessity to first compile the code, we would classify all
tools using this methodology as level 2. Incremental builds and even
hot-swapping modules is increasingly being used in the industry,
but still entails considerable delays and drawbacks, such as only
being able to migrate certain types of changes [6].

In a GDC Talk, Lightbown demonstrates a tool that can be used
to preview the way a 3D model will fall apart when exposed to
damage [12]. Typically, a designer or developer would have to
launch the game after defining the destruction pattern of a model,
move to the right place in the scene and cause the right type of
damage and repeat this process for each damage type and iteration.
The tool instead allows choosing a type of damage and, while still
in the editor, cause this type of damage to an object in the scene, to
get an instant, animated preview of what the destruction pattern
would look like. In this way, the tool permits designers to execute
an otherwise static declaration of a destruction pattern while in the
editor. Therefore, the tool is used for both the See the Future and
Interaction between Art and Game use cases.

3.3.2 Liveness Level 3. If a system re-executes upon editing its
description, it is considered to exhibit liveness level 3. Examples of
this behavior can be found particularly in procedural generation
tools. Lambe describes a plugin called DING for the 3D modelling
tool Maya for generating insects [11]. It was created to speed up
development and iteration times during the creation of one of their

An Exploratory Literature Study on Live-Tooling in the Game Industry (PREPRINT) LIVE’19, October 20–25, 2019, Athens, Greece

Figure 3: Screenshot of Lambe’s system showing the node
network for generating an insect above and the result on the
bottom. The last node in the network is an output node that
takes the transformed stream and displays it as a 3D mesh.

games. The tool is able to create geometry and transform it using a
variety of operators. The operations are described in a graph via
nodes, each node having a set of parameters that modify its exact
behavior. Changing any parameter or the structure (Edit Piece of
Data use case) of the graph triggers an immediate rebuild of the
model, allowing the designer to quickly explore different options.

3.3.3 Liveness Level 4. For liveness level 4, any change that is
triggered will be streamed to a running system, instantly rendering
effects of the change visible.

An example of this can be found in the dialog system created
for “The Witcher 3” [24]. The dialog system in this game is driven
by recorded audio files of the dialog, thus handling the Interaction
between Art and Game. An editor resembling video editing software
(seen in Figure 4) allows the designer to create cuts, move objects
around, blend animations, trigger events, or even conditionally
cause different actions to play, based on the state of the environment,
for example depending on the time of day. At all times, every change
is instantly rendered visible in a preview that can either be in a
dedicated preview window or directly inside the game (Edit Piece
of Data use case).

3.3.4 Liveness Level 5 and 6. In liveness level 5, the tool strategically
suggests changes to adapt the program for what it guesses its user
intent is. In liveness level 6, the tool goes beyond this and can
generate whole artifacts upon request.

One recent example of liveness level 5 and 6 can be found in
the work-in-progress tool “Promethean AI” [13]. The tool allows

Figure 4: The dialog editor from “TheWitcher 3”. On the left
a preview window plays the animation continuously and al-
lows to jump back to a relevant in the timeline (Replay / Edit
(Past) use case). On the right a sequence editor allows sched-
uling events or camera cuts. Parameters can be adjusted in
the adjacent properties panel and take effect immediately.

its users to describe a setting in natural language, for example
“children’s room with 80’s furniture”. The tool then generates a
scene matching this description by sampling from a collection of
3D models, which corresponds to the Level Creation and Debugging
use case. W consider this to correspond to a system with liveness
level 6. Users can then issue abstract commands, such as “swap the
bed and the cupboard”, and the system takes care of rearranging the
adjacent bed table or the general room layout to accommodate the
request. Further, recordings of the system demonstrate its ability
to collaborate closely with a human author. Asking the system to
show green alternatives for the door will prompt the user to select
a door from the system’s catalogue that will then be automatically
inserted and the walls adjusted to fit the door. Editing the room in
this way allows to Edit Piece of Data. The strategic adaptions that
maintain the semantics of the furniture in this case we consider as
liveness level 5.

In the context of programming, we can consider this system
equivalent to a code autocompletion that understands abstract com-
mands and is able to generate code matching a certain request. Com-
mands such as “open and parse the csv file passed to this method”
or “generate a room” respectively would be level 6. Commands
to automatically refactor source code while being fully aware of
context and constraints, or moving furniture while staying aware
of dependencies and semantics of the room, would be level 5.

4 DISCUSSION
In the following, we will the describe threats of validity to the
results of the study. After that, we will discuss possible future work.

4.1 Threats to validity
A bias was introduced through our sampling method: first, we
only considered articles and videos containing the word "tool",
potentially missing articles that describe tools without explicitly
mentioning the word. Second, our method of filtering this list of
articles and videos was for some parts based on just the title or

LIVE’19, October 20–25, 2019, Athens, Greece Tom Beckmann, Christian Flach, Eva Krebs, Stefan Ramson, Patrick Rein, and Robert Hirschfeld

short sections in the video. Further, each article or video was only
coded by one author.

We only considered the two sources we described that the au-
thors, not coming from a game development background, consid-
ered the richest in information. This assessment has not been con-
firmed by anyone from the game industry.

Lastly, game studios do not necessarily share all their tools or
workflows openly. Even though a culture of sharing and building
on top of another studio’s ideas was a practice we often observed
in our sources, we have found for example not a single article or
video in which a studio presented an exhaustive overview of the
tools it uses.

4.2 Future Work
This paper should only be regarded as a basis for further investi-
gation. In particular, a quantitative analysis, potentially involving
even more sources, could be interesting. It may allow to get a
more accurate feeling on the level of exchange inside the game
development community and ascertain how prevalent the aspects
we identified as essential for game development tools actually are
across different tools.

Further, it could be interesting to exchange with people from the
game industry on the findings. This could both act as verification
of the findings, as well as a means to determine new sources for
literature.

It could also be interesting to specifically analyse the various
visual programming languages currently in use by the game devel-
opment industry. These tools act on various data formats, such as
source code, dialog trees, or world generator settings.

Inspecting existing, state of the art game development tools and
identifying opportunities where insights from the live-programming
community could benefit the tooling could also be considered. This
might both benefit the visibility of these insights as well as benefit
the game development community.

5 CONCLUSION
We examined a variety of game development tools, some of which
are aimed at programmers, most aimed at artists and (game) design-
ers. We identified information needs, clustered them into common
use cases, and gathered general observations on the game develop-
ment process.

We believe that the strongly visual, interactive, and highly domain-
specific nature of games and their tools could be of interest to the
live programming community. The various tools we presented may
serve as inspiration on how to make programming interfaces ac-
cessible to non-programmers. Even though some of the observed
tools rely on the fact that there is a simulation constantly running
in the background, many systems could be automated to exhibit
similar behavior, even if they are supposedly static, for example by
means of providing examples to functions [7, 18].

While some of the use cases we found are relatively game-specific
(e.g., Level Creation and Debugging), some are also applicable to gen-
eral software development. For example, many debuggers show the
values of variables while the program is halted (Make the Invisible
Visible). Further, some tools allow to emulate a bad network con-
nection, e.g., to check how a website loads under these conditions
(Hardware Emulation) [3].

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of HPI’s Research
School and the Hasso Plattner Design Thinking Research Program.

REFERENCES
[1] 2019. Gamasutra - The Art & Business of Making Games. https://www.gamasutra.

com/
[2] 2019. GDC Vault. https://www.gdcvault.com/
[3] Kayce Basques. 2019. Network Analysis Reference. https://developers.google.

com/web/tools/chrome-devtools/network/reference#throttling
[4] Stephen Broadley. 2016. Empowering Content Creators. https://www.gdcvault.

com/play/1023274/Empowering-Content
[5] Sander van der SteenDan Sumaili. 2017. Creating a Tools Pipeline for ’Horizon: Zero

Dawn’. https://www.gdcvault.com/play/1024124/Creating-a-Tools-Pipeline-for
[6] Mark DeLoura. 2019. Unreal Engine 4.22 released. https://www.unrealengine.

com/en-US/blog/unreal-engine-4-22-released
[7] Jonathan Edwards. 2004. Example Centric Programming. SIGPLAN Not. 39, 12

(Dec. 2004), 84–91. https://doi.org/10.1145/1052883.1052894
[8] David "Rez" Graham. 2012. In-Game Debugging and Visualization Tools. In-

GameDebuggingandVisualizationTools
[9] Maria Grant and Andrew Booth. 2009. A Typology of Reviews: An Analysis of

14 Review Types and Associated Methodologies. Health Information & Libraries
Journal 26, 2 (2009), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

[10] Stas Korotaev. 2018. Time Manipulation in Unity - Recorded Solutions. https://web.
archive.org/web/20190801140838/https://gamasutra.com/blogs/StasKorotaev/
20180715/322091/Time_Manipulation_in_Unity__Recorded_Solutions.php

[11] Ichiro Lambe. 2012. Procedural Content Generation: Thinking With Mod-
ules. https://web.archive.org/web/20190801115617/https://gamasutra.com/view/
feature/174311/procedural_content_generation_.php?page=5

[12] David Lightbown. 2017. Getting Productivity from Play: How Ubisoft Is Making
Better Tools by Using a Familiar Resource. https://www.gdcvault.com/play/
1023953/Getting-Productivity-from-Play-How

[13] Alissa McAloon. 2018. Promethean AI aims to take the grunt work out of
worldbuilding through AI. https://web.archive.org/web/20190801114902/https:
//gamasutra.com/view/news/322318/Promethean_AI_aims_to_take_the_
grunt_work_out_of_worldbuilding_through_AI.php

[14] Sean McDirmid. 2013. Usable live programming. In ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH
’13, Indianapolis, IN, USA, October 26-31, 2013, Antony L. Hosking, Patrick Th.
Eugster, and Robert Hirschfeld (Eds.). ACM, 53–62. https://doi.org/10.1145/
2509578.2509585

[15] Dan Moskowitz. 2013. Exploring SimCity: A Conscious Process of Discovery. https:
//www.gdcvault.com/browse/gdc-13/play/1017948

[16] Christian Nutt. 2011. An Engine For Assassination: IO’s Tech Director
Speaks. https://web.archive.org/web/20190801141745/https://gamasutra.com/
view/feature/134933/an_engine_for_assassination_ios_.php

[17] Pietro Polsinelli. 2019. Direction Tools For Your Game’s Dialogues. https://web.
archive.org/web/20190801141934/https://gamasutra.com/blogs/PietroPolsinelli/
20190108/333894/Direction_Tools_For_Your_Games_Dialogues.php

[18] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming: Design and Implementation of an Integra-
tion of Live Examples into General-purpose Source Code. CoRR abs/1902.00549
(2019). arXiv:1902.00549 http://arxiv.org/abs/1902.00549

[19] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding: A Literature Study Com-
paring Perspectives on Liveness. The Art, Science, and Engineering of Programming
3, 1 (2018). https://doi.org/10.22152/programming-journal.org/2019/3/1

[20] Jesse Schell. 2014. The Art of Game Design: A Book of Lenses (2nd ed.). A. K.
Peters, Ltd., Natick, MA, USA.

[21] Pawel Siarkiewicz. 2019. A Guide to Developing on Stadia. https://www.gdcvault.
com/play/1026499

[22] Steven Tanimoto. 2013. A Perspective on the Evolution of Live Programming.
In 1st International Workshop on Live Programming (LIVE 2013) (LIVE ’13). IEEE
Press, Piscataway, NJ, USA, 31–34. https://doi.org/10.1109/LIVE.2013.6617346

[23] Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing. Journal
of Visual Languages and Computing 1, 2 (1990), 127–139. https://doi.org/10.1016/
S1045-926X(05)80012-6

[24] Piotr Tomsinski. 2016. Behind the Scenes of Cinematic Dialogues in ’The Witcher
3: Wild Hunt’. https://www.gdcvault.com/play/1023285/Behind-the-Scenes-of-
Cinematic

[25] Valve. [n.d.]. Valve Hammer Editor. https://web.archive.org/web/20190801141246/
https://developer.valvesoftware.com/wiki/Valve_Hammer_Editor

[26] Bret Victor. 2012. Inventing on Principle. http://worrydream.com/#!
/InventingOnPrinciple

https://www.gamasutra.com/
https://www.gamasutra.com/
https://www.gdcvault.com/
https://developers.google.com/web/tools/chrome-devtools/network/reference#throttling
https://developers.google.com/web/tools/chrome-devtools/network/reference#throttling
https://www.gdcvault.com/play/1023274/Empowering-Content
https://www.gdcvault.com/play/1023274/Empowering-Content
https://www.gdcvault.com/play/1024124/Creating-a-Tools-Pipeline-for
https://www.unrealengine.com/en-US/blog/unreal-engine-4-22-released
https://www.unrealengine.com/en-US/blog/unreal-engine-4-22-released
https://doi.org/10.1145/1052883.1052894
In-Game Debugging and Visualization Tools
In-Game Debugging and Visualization Tools
https://doi.org/10.1111/j.1471-1842.2009.00848.x
https://web.archive.org/web/20190801140838/https://gamasutra.com/blogs/StasKorotaev/20180715/322091/Time_Manipulation_in_Unity__Recorded_Solutions.php
https://web.archive.org/web/20190801140838/https://gamasutra.com/blogs/StasKorotaev/20180715/322091/Time_Manipulation_in_Unity__Recorded_Solutions.php
https://web.archive.org/web/20190801140838/https://gamasutra.com/blogs/StasKorotaev/20180715/322091/Time_Manipulation_in_Unity__Recorded_Solutions.php
https://web.archive.org/web/20190801115617/https://gamasutra.com/view/feature/174311/procedural_content_generation_.php?page=5
https://web.archive.org/web/20190801115617/https://gamasutra.com/view/feature/174311/procedural_content_generation_.php?page=5
https://www.gdcvault.com/play/1023953/Getting-Productivity-from-Play-How
https://www.gdcvault.com/play/1023953/Getting-Productivity-from-Play-How
https://web.archive.org/web/20190801114902/https://gamasutra.com/view/news/322318/Promethean_AI_aims_to_take_the_grunt_work_out_of_worldbuilding_through_AI.php
https://web.archive.org/web/20190801114902/https://gamasutra.com/view/news/322318/Promethean_AI_aims_to_take_the_grunt_work_out_of_worldbuilding_through_AI.php
https://web.archive.org/web/20190801114902/https://gamasutra.com/view/news/322318/Promethean_AI_aims_to_take_the_grunt_work_out_of_worldbuilding_through_AI.php
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://www.gdcvault.com/browse/gdc-13/play/1017948
https://www.gdcvault.com/browse/gdc-13/play/1017948
https://web.archive.org/web/20190801141745/https://gamasutra.com/view/feature/134933/an_engine_for_assassination_ios_.php
https://web.archive.org/web/20190801141745/https://gamasutra.com/view/feature/134933/an_engine_for_assassination_ios_.php
https://web.archive.org/web/20190801141934/https://gamasutra.com/blogs/PietroPolsinelli/20190108/333894/Direction_Tools_For_Your_Games_Dialogues.php
https://web.archive.org/web/20190801141934/https://gamasutra.com/blogs/PietroPolsinelli/20190108/333894/Direction_Tools_For_Your_Games_Dialogues.php
https://web.archive.org/web/20190801141934/https://gamasutra.com/blogs/PietroPolsinelli/20190108/333894/Direction_Tools_For_Your_Games_Dialogues.php
http://arxiv.org/abs/1902.00549
http://arxiv.org/abs/1902.00549
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://www.gdcvault.com/play/1026499
https://www.gdcvault.com/play/1026499
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1016/S1045-926X(05)80012-6
https://www.gdcvault.com/play/1023285/Behind-the-Scenes-of-Cinematic
https://www.gdcvault.com/play/1023285/Behind-the-Scenes-of-Cinematic
https://web.archive.org/web/20190801141246/https://developer.valvesoftware.com/wiki/Valve_Hammer_Editor
https://web.archive.org/web/20190801141246/https://developer.valvesoftware.com/wiki/Valve_Hammer_Editor
http://worrydream.com/#!/InventingOnPrinciple
http://worrydream.com/#!/InventingOnPrinciple

	Abstract
	1 Introduction
	2 Methodology
	2.1 Search
	2.2 Appraisal
	2.3 Synthesis
	2.4 Analysis

	3 Study Results
	3.1 General Observations
	3.2 Use Cases of Game Development Tools
	3.3 Examples of Tools Classified by Liveness Level

	4 Discussion
	4.1 Threats to validity
	4.2 Future Work

	5 Conclusion
	Acknowledgments
	References

