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ABSTRACT
Implicit Layer Activation (ILA) is a declarative mechanism to scope
behavior adaptations in Context-oriented Programming (COP). ILA
binds the activation status of a layer to a Boolean condition. The
layer is active as long as the given condition evaluates to true.
This mechanism to scope layer activations is very powerful, but
without dedicated tool support, it may be hard to debug due to its
implicitness. A solution that can mitigate this is proper tool support,
which is expensive to build and can be highly domain-specific. We
have previously shown that by building the language extension not
from scratch but by relying on a common more powerful shared
concept, Active Expressions, the implementation becomes simpler
and more elegant since it does not require deep integration into the
ContextJS implementation. In this paper we show how providing
tool support for ILA makes implicit dependencies to state changes
more explicit. We show how such tool support can be implemented
by leveraging the existing Active Expression tool suite. We illustrate
the usage based on a catalog of COP questions from literature.
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1 INTRODUCTION
As the name already suggests implicit layer activation is an in-
direct way to control the scope of behavioral adaptations in con-
text oriented programming. There are serveral context oriented
programming (COP) implementations supporting implicit layer ac-
tivation (ILA) [1, 11, 12, 17, 21]. ILA is different from other COP
layer activation mechanisms such as dynamically scoped or global
layer activation, in that it is not explicitly activated with a control
statement, but behavior gets activated automatically whenever an
expression would evaluate to be true. Consequently, not the devel-
oper, but the system is in charge of identifying context boundaries.

Using this concept may result in more declarative code. At the
same time, its implicit nature makes it hard to debug. For example,
it is not clear what imperative change in some program states might
trigger an ILA. Dedicated tool support can mitigate such problems
when for example the line that would trigger an ILA is highlighted
in the code editor, the layer activation becomes visible. Building
such powerful tool support that makes implicit dependencies ex-
plicit through visualizations and dynamic highlighting is hard and
expensive. In a previous paper [17] we have shown that with the
help of Active Expression, adding implicit layer activation to Con-
textJS is possible just by using the public API and without having
to change the underlying layer composition mechanism itself. In
this paper, we show that building on top of Active Expression (AE)
further allows us to reuse the underlying AE tool-suite. The im-
plicit layer activation tools presented in this paper are part of a
bigger evaluation of language extensions and reactive concepts that
build on AE [2]. In that work, the whole AE tool suite, including
domain-specific extensions for implicit layer activation, Signals,
and other reactive concepts (together called State-Based Reactive
Concept) are presented and evaluated. In this paper, we concentrate
on proper tool support for implicit layer activation that uses visual-
izations and highlights to make implicit dependencies explicit and
thus more comprehensible.

The remaining of this paper is structured as follows. In section 2,
we look at what implicit layer activation is, give an introduction to
Active Expression, and an overview of the existing AE tool suite.
section 3 presents our approach to a tool set for implicit layer acti-
vation. section 4 presents the implementation in Lively4. section 5
uses six questions from literature applied to an example to illustrate
the usage of our tool set. Finally, section 6 concludes this work.
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2 BACKGROUND
As a basis for the ILA toolset, we need to look at the COP language
extension, AE, and its tools suite [2].

2.1 Implicit Layer Activation
To understand implicit layer activation, we first have to look at
method layers, [3]. Method layers are a language construct from
COP, where methods can be layered with toggleable functionality.

1 let baz = new Layer(); // Layer definition

2 const foo = {

3 bar() { // bar is a layered method

4 return 17;

5 }

6 };

7

8 baz.refineObject(foo , {

9 bar() { // Partial method definition

10 // proceed calls the original bar

11 return 42 + proceed ();

12 }

13 })

Listing 1: Basic example of a layer refining a method

As seen in listing 1, this functionality is specified by defining a
layer (baz) with a partial method (bar), which executes code and
can use the underlying partial method using a proceed() call. The
system, therefore, behaves similarly to overriding methods in inher-
itance, except that the additional functionality is active if and only if
the corresponding layer is active. Before the invocation of a layered
method, the system, therefore, checks all the layers and augments
the code with the additional functionality from all active layers.
There are various proposed activation means for method layers [12],
most of which require developers to model context switches ex-
plicitly. In contrast, the concept of implicit layer activation [21]
describes the dynamic activation or deactivation of method layers
based on a boolean expression using the activeWhile method. The
layer is active if and only if a specified boolean expression returns
true.

1 baz.activeWhile(/* condition */);

While this behavior can be implemented in an imperative style,
an argument in favor of a reactive implementation can be made [17].
While the imperative implementation performs better in a system
with frequent context switches, the reactive implementation is more
suitable if the context-dependent behavior is called frequently and
the condition is time-intensive to evaluate. Further, the reactive
implementation allows for eager life-cycle callbacks, which can run
code registered by a onActivate or onDeactivate method, as soon
as a layer toggles its state.

1 baz

2 .onActivate (() => lively.notify("Enabled"))

3 .onDeactivate (() => lively.notify("Disabled"));

For such a reactive implementation, an AE can be used to watch
the boolean expression and activate or deactivate the layer when-
ever the expression changes.

2.2 Active Expressions
The AE [16] is a reactive primitive that automatically detects
changes in the return value of an expression. When a change oc-
curred, previously registered callbacks are automatically called with

1 aexpr(expression).onChange(callback);

Listing 2: Most basic form of an Active Expression

the new value of the expression. Listing 2 displays the syntax of
this concept in its original implementation in the Lively4 system in
JavaScript.

There are two main approaches to implementing this thin inter-
face: First, the explicit method reevaluates the monitored expres-
sions and compares the result to see if it changed. The reevaluations
can either be triggered by the user with check(); calls, similar to
the observer pattern [5], or automatically in small intervals by the
system. This approach brings the disadvantage of either requiring
a lot of manual work from the user or causing a lot of unnecessary
reevaluations of the expression. The second method requires the
identification of dependencies, which are variables that can change
an AE, and the monitoring of the dependencies’ write accesses.
This can be achieved in several non-trivial ways, like modifying
the VM or setting up code hooks via reflection, or performing a
source code transformation. From here on, we abstract from the
concrete implementation and only assume that an AE knows its
dependencies.

AEs are designed to ease the detection of state changes while
integrating well into existing object-oriented programming (OOP)
languages. To achieve this effortless integration, every variable,
including local, global, and member variables, that is used in an
AE is automatically used as a dependency for this AE, without the
need to manually mark it as a dependency. An example program
that makes use of this can be seen in Listing 3.

1 let t = 0;

2 let h = 0;

3 aexpr (() => t + (h - 0.3) * t * 0.25)

4 .onChange(tA => println("Apparent Temperature: " + tA));

5

6 readTemperature(val) {

7 t = val;

8 }

9 readHumidity(val) {

10 h = val;

11 }

Listing 3: AE based reactive temperature sensor

2.3 Active Expression-based Implementation of
Implicit Layer Activation

The AE based implementation of ILA is realized through source
code transformation. The rewriting process is quite straightforward:
Figure 1 shows how code is transformed using a babel abstract syn-
tax tree (AST) transformation. The expression is placed in an AE
which uses the utility methods onBecomeTrue and onBecomeFalse

to activate or deactivate the layer, when the return value of the
expression becomes false or true, respectively. The rewriting also
adds some additional information that is relevant for the debugging
tools later: the fact that this AE represents a ILA, and the layer it
activates. Instead of rewriting, the library that provides the method
layer functionality could also internally call aexpr with the argu-
ments shown in figure 1. For our purposes, this would complicate
detecting the lines of code that create an ILA and annotating this
information for our debugging tools. To patch this information, an
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Before transformation
1 landscapeModeLayer.activeWhile (() => width > height);

2

3

4

After transformation
aexpr (() => width > height , {

isILA: true , ila: landscapeModeLayer

}).onBecomeTrue( () => landscapeModeLayer.activate ())

.onBecomeFalse (() => landscapeModeLayer.deactivate ());

Figure 1: implicit layer activation syntax in the Lively4 system, which is rewritten using AEs.

additional rewriting would be required anyway. Unlike signals, ILA
AEs are not prioritized for the evaluation order but follow the same
rules as other AEs.

2.4 Active Expression Tool Set
The AE tool set consists of four tools: The code annotations augment
the code to highlight the interface between the imperative and
reactive worlds and provides an entry point into the other tools
as well as code navigation capabilities. The AE overview shows all
AEs that are currently in the system. The event timeline provides a
temporal overview of the reactive system. The dependency graph
gives a structural overview.

Figure 2: The code annotations add indicators at lines of
code that define or trigger reactive behavior (1). The context
menu of a line, changing a dependency, links to all Active
Expression written by the dependency (2).

2.4.1 Code Annotations. Annotating code at the interface between
the imperative and reactive worlds bridges the gap between these
worlds and provides an entry point for debugging. As seen in fig-
ure 2, lines that contain an AE, as well as lines that change a de-
pendency of an AE are annotated with a respective icon in a UI
gutter on the left (1). The annotations project the dynamic runtime
dependency information back onto the static code. The icons can be
clicked for additional information, code navigation and to open the
other reactive tools with information relevant to the selected line (2)
and (3). The code navigation helps to understand, which lines in the
imperative code interact with the declarative behavior of an AE. If
the evaluation of an AE fails with an error, the code locations of the
AE and the triggering dependency display an additional warning
icon, which provides additional information about the error.

2.4.2 Overview. An overview of the AEs in a system is an impor-
tant first step in investigating reactive behavior. As seen in figure 3,
we chose a hierarchical tree that groups the AEs by file, then line,
and then instance, to structure the AEs and ease searching for spe-
cific AEs (1). Each AE instance has a corresponding emoji (2) that
eases tracking this AE across multiple visualizations. The context
menu of each item also allows the user to perform actions on the
AEs in this subtree, like disposing or setting their logging behavior
(3).

Figure 3: Overview showing all Active Expressions in a hier-
archical tree

Figure 4: Event timeline tool depicting events and values of
selected Active Expressions over time

2.4.3 Event Timeline. To properly reify the mental model of AEs a
temporal overview of the reactive behavior is required. To achieve
this, the timeline visualizes events that happened during the lifetime
of an AE, as displayed in figure 4. These events include value and
dependency changes, (de-)registration of callbacks, and created
and disposed events (1). The tool also incorporates the overview
component (2). The timeline will always be filtered to only the
AEs selected in this component. The history of the values an AE
evaluated-to over time as well as filter functionality for events can
be found in the upper right corner (3). Hovering an event shows
additional information relevant to that event type (4) and clicking
the event allows for additional debugging actions like jumping to
the line in the code responsible for emitting the event, or opening
the event in an object inspector (5).

2.4.4 Dependency Graph. The dependency graph visualizes the
reactive graph. As shown in figure 5, the graph can visualize the
dependencies between AEs and the object graph (1) at a specific
timestamp during execution, e.g. upon the evaluation of an AE. The
graph can therefore help understand the cause of an event as well as
the state of the program. It also uses the same overview component
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Figure 5: The Dependency graph (1) with Active Expres-
sion overview for selection (2) and event selection for time
travel (3)

as the timeline to allow the user to filter and select relevant AEs to
show in the graph (2). One of the main features of the graph is that
it combines the temporal and structural dimensions of the reactive
graph. An event selection slider allows the user to select an event
from one of the displayed AEs (3). The graph always shows the
state of the system at the time of the selected event, allowing the
user to travel through time and inspect the evolution of the reactive
graph over time. The graph also highlights the changes the selected
event caused (the edge from length to the AE is highlighted).

3 IMPLICIT LAYER ACTIVATION TOOL SET
Using the default tool suite for Active Expressions allows will show
some information at run time in the development tools, but more
specialized adaptations are needed. For example, implicit layer
activations limits the relevant value range to a boolean value and
has a more specialized reaction.

3.1 Running Example: Online Editor
To build a better understanding ILA and to better demonstrate how
the debugging requirements of this concept change compared to
AEs, we introduce a running example of a text editor. This text
editor will have an online mode, where it syncs all changes with
a remote server and an offline mode where the text content is ex-
clusively saved locally. Note, that this example is part of a bigger
evaluation [17] and uses also the reactive concepts "signals", demon-
strating that the AE tool suite can be used to work on different
reactive concepts on the same code base.

The offline text editor has two functions of interest, shown in
listing 4: render returns an HTMLElement with the content of the text
editor and savewrites the current content of the text field into local
storage.

A signal is used to append the content of the text editor into
the DOM. It automatically detects when the return value of the
render method changes and therefore relieves the programmer of

1 class TextEditor {

2 /* ... */

3 render () {

4 return <input

5 type="text" id="text"

6 value={this.localStorage.read(this.file)}></input >;

7 }

8 save(text) {

9 this.localStorage.write(this.file , text);

10 }

11 }

12 let editor = new TextEditor ();

13 // content is the div containing the editor

14 signal: content.innerHTML = editor.render ().outerHTML;

Listing 4: The basic text editor and a signal that keeps the
DOM up-to-date

1 this.onlineLayer = new Layer("onlineEditor");

2

3 this.onlineLayer.refineObject(this.editor , {

4 render () {

5 return <div style="border :2px solid blue">{

6 proceed ()

7 }</div >

8 },

9 save(text) {

10 this.server.send(this.file , text)

11 proceed(text)

12 }

13 })

Listing 5: Remote editor method layer definition

1 this.onlineLayer.activeWhile (() =>

2 this.workRemote && this.server.connected);

3

4 this.server.onFileChange(this.file , () =>

5 this.mergeServer ())

6

7 this.onlineLayer.onActivate (() => this.mergeServer ());

8

9 this.onlineLayer.onDeactivate (() => {

10 if(this.workRemote) {

11 lively.notify("Lost server connection")

12 }

13 });

Listing 6: Method layer activation and event handling

updating the DOM when a change occurred. For the online mode,
changes are saved on a server to allow for a shared text editor.
Whenever a change is made, it is submitted directly to the server.
However, if no internet connection is established, content changes
are saved locally and get synchronized with the server as soon as
the connection is back up.

To implement this functionality, a method layer (see section 2.1)
called onlineLayer (see listing 5) is used to augment the functions
of the text editor with the required additional functionality. This
allows all server-specific code to be defined at one central point,
increasingmodularity [15] and improving separation of concerns [4,
18]. The render method adds a blue border around the text field to
indicate that it is synced. The save method sends the content of the
text editor to the server.

We want this additional behavior to only be active while a con-
nection to the server is established and the programmer chose to
work remotely, which is specified with the activeWhile function
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Figure 6: This figure shows the code view adjusted for signals
(1) and implicit layer activation (2 and 3). Methods with an
overview icon in the gutter can navigate to other partial
layers of the method (2). The ILA definition (3) can navigate
to partial methods (4) it refines.

(see listing 6). Further, we specify that when the server connection
comes back online, or a change occurred on the server, we want to
merge server and client texts. When the connection to the server is
lost, but the programmer still wishes to work online, a message is
printed.

3.2 Code Annotations
The code view mainly focuses on the change detection aspect. How-
ever, it should also be able to visualize the specialized reaction
behavior. The ILAs should change the AE icon in the line that de-
fines the concept to an icon that represents this concept, to not
reveal to the user that the concept is implemented using an AE.
As shown in figure 6, an implicit layer activation’s declaration (3)
links to the method layers it can activate or deactivate (4) and vice
versa. Further, layered methods link to the original method and
vice versa(2). Since the reaction of a signal, writing a variable, is
already visible in the signal declaration and the possible change
propagation is captured in the already displayed dependencies, no
additional information is required.

3.3 Overview
Similar to the code annotations, the overview component that is
integrated into the timeline and the dependency graph tools mainly
has to change names to hide the underlying AE-implementation of
the concepts (see figure 7). For an ILA, we show the corresponding
method layer name instead of the AE code as its identifier (2).

With these small changes, the tool is equipped to give the pro-
grammer an overview of all reactive concepts currently used in the
system.

3.4 Event Timeline
Other State-Based Reactive Concepts (SBRCs) usually require dif-
ferent event types compared to AEs. This leads to three scenarios:
events can be completely hidden from the user, they can be adapted
to better capture the specialized behavior, or new events can be
added. Most commonly, the added and removed callback events no
longer apply to all previously discussed SBRCs, since the reaction

Figure 7: Reactive concepts overview for signals (1) and im-
plicit layer activation (2) adapted from the Active Expression
overview.

Figure 8: Timeline view depicting an implicit layer activation
with new event types (1), intervals that depict when a layer
is active (2), and a specialized event (3)

to change is fixed and can no longer be set by the user. These events
should therefore be filtered in the timeline.

ILA benefits from additional events, which are shown in figure 8.
As the creation of a method layer does not necessarily happen at
the same moment when the implicit activation condition is set, an
additional event is required. We reused the AE creation for the im-
plicit condition creation and introduced a new layer-created event
depicted in mint (1). Moreover, refining and un-refining methods
can be done at runtime too, and should therefore also be captured
by events (1). Having these additional events also helps the de-
pendency graph in reconstructing an accurate picture of the ILA
system at any point in time. As the values the expression of an
ILA can evaluate to are restricted, the values over time view can
be specialized: since the return values are always interpreted as
boolean, the intervals in which a layer is active can be marked
directly inside the timeline (2), instead of a row of alternating true
and false values. Due to the additional knowledge of the reaction,
specialized information can be displayed. As seen in figure 8 the
changed value event for ILA (3) also shows that two partial methods
in one object were disabled. The event can jump to those partial
methods in the code.

3.5 Dependency Graph
Since SBRCs based on AEs specializes in the reactive behavior, the
current visualization of generic callback nodes no longer captures
this behavior properly, but accidentally reveals implementation de-
tails irrelevant to the user. Instead, the specialized behavior should
be shown directly. Thus, when the boolean expression of an im-
plicit layer activations changes, the specialized reaction, which is
the activation or deactivation of a method layer, needs to be visu-
alized. The tool has to be able to link to the respective code and
highlight which code is active and which is not. As seen in figure 9,
we achieved this by introducing the yellow layer (1) and layered
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function (2) nodes. The layer nodes are specialized AE nodes that
show the state of the layer and have the layered function nodes as
children. The layered function nodes show the current interface of
the layered method by listing the layers of a function in execution
order from top to bottom while graying out inactive layers and
highlighting the proceed calls.

Figure 9: Dependency graph adjusted for implicit layer ac-
tivations: The internal Active Expression nodes are hidden
and replaced with specialized nodes. The yellow nodes (1 and
2) show a deactivated layer.

Figure 10: Code annotations at a layered method

4 IMPLEMENTATION
The debugging toolsets are implemented in the Lively4 system [7, 9,
13]. Lively is a live object computing environment [7, 8, 10, 19] for
the web implemented using JavaScript. Like Squeak/Smalltalk [8],
the Lively system is a self-sustaining system (S3) [6], which means
that it is based on a small kernel that is used to implement the

Figure 11: Dependencies of dark theme and online layers

entire user interface, including programming and debugging tools
from within itself. This results in both the applications and the
tools used to create these applications being implemented in the
same environment. Lively was chosen for this project because the
combination of live programming and an self-sustaining system (S3)
allows us to implement and execute both a programming concept
and its debugging tools in the same environment [14].

4.1 Dynamic Analysis of AE
The Lively4 system provides multiple implementations of AEs,
which all share BaseActiveExpression as a common base. We only
focus on the RewritingActiveExpression, which implements the
change detection behavior by rewriting the source code via AST
transformation with babel1 and injecting hooks, whenever the state
is accessed. We also inject code that analyses an AE on registration,
to determine its Dependencies. A Dependency has a type which can
be either local, global or member and DependencyKeywhich uniquely
identifies the Dependency. Each DependencyKey does this by convert-
ing all three types of Dependencies into a context object and an
identifier string, which can then be used to access the value with a
computed member expression. To achieve this for local and global
dependencies, scope objects are generated, which converts a vari-
able x into an expression like _scope1["x"]. For a member Depen-
dency like vector.x, this is trivially achieved by using vector as the
context and x as the identifier which results in a vector["x"] mem-
ber expression to compute the value of the Dependency. Whenever
1https://babeljs.io/
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Figure 12: Code annotations at a ILA declaration.

Figure 13: Concepts overview of ILA and a signal

a Dependency registers a change, all its affectedAEs are notified and
reevaluated. If the evaluation result of an AE changed, it proceeds
to call its callbackswith the new value. All BaseActiveExpressions
in the system are stored in a ActiveExpressionRegistry singleton,
which is a management class that allows reflective access to the
AEs in the system.

4.2 Active Expression Tools in Lively4
All tools are implemented as components in the Lively4 system and
share common functionalities. They all use the Lively4 inspector
component, which allows the inspection of any given object by
recursively displaying all of its members in a tree view. The graph
and the timeline also share the AE overview component described
below. The last common functionality is the connection between
the tools: each tool provides a method to open it with a filter. If
this method is called and a matching window already exists, the
window will be reused; a new one is created otherwise. The code
annotations allow jumping to a certain location in the code, which
is used to find the definition of an AE or the write access to a
dependency that caused an event. The timeline and the graph can
both be opened for a list of AEs that will be selected in the AE
overview component, and optionally an event to select.

4.3 Code Annotations
Lively4 uses CodeMirror2 as its code editor. The code annotations
add a gutter for reactive behavior, which displays appropriate icons
in lines of code containing AE definitions or dependencies. To
achieve this, it queries the global AE cache and aggregates the data
per line of code. When the icon is clicked, a context menu appears
that lets the user jump into one of the other two tools or navigate
from an AE to its dependencies in the code or vice versa. It also
shows an additional icon when the evaluation of an AE failed in
the line of the AE definition and the triggering dependency. This
notifies the programmer that something is probably not as expected
and encourages them to use the tools to determine the reason.
2https://codemirror.net/ (August 8, 2021)

Further, we implemented functionality for aggregating multiple
annotations in one line. Instead of the specific icon, a generic RE
(for reactive) icon is shown, and the context menu adds a top layer,
with an entry for each annotation.

4.4 Adapting for Implicit Layer Activation
These implementations are based on AEs and the AE debug-
ging toolset respectively. Figure 1 shows how to create an im-
plicit layer activation in the Lively4 system. In this example, the
landscapeModeLayer is active if and only if width is greater than
height.

In general, all tools try to hide the underlying AE-based imple-
mentation of the ILA logic by renaming and augmenting visualiza-
tions. Some domain-specific events are added, which are relevant to
multiple tools. The refine and unrefine events are triggered when
the layer refines or unrefines a function. These events are required
to determine the interface of a layered function at any point in
time. Moreover, next to the ILA created event, which is a derived
version of the AE created event, a layer-created event is added. The
first is triggered when the ILA condition is registered, while the
latter is triggered directly at layer creation. Since events can occur,
before the AE, which usually stores the events, is created, they
can temporally be stored in the layer object and are transferred to
the AE on its creation. Also, the callback register and deregister
events are removed, as these events always happen together with
the creation of the ILA. To enable navigating to ILA definitions and
partial layers, we add additional information during the rewriting
that is then stored in the corresponding events.

4.4.1 Code Annotations. The code annotations introduce a new
icon for ILA. The context menu at the code locations that define the
ILA is now linked to the methods they activate and deactivate and
vice versa. To achieve this, code locations for refining and unrefin-
ing methods as well as defining an ILA are stored in the respective
events. We also added a layer overview with an additional anno-
tation to each partial method definition, as seen in figure 10. This
overview shows all partial method and their corresponding layers
in execution order and with the current partial layer highlighted.
Clicking one of the partial layers navigates to the corresponding
definition.

4.4.2 Overview. The overview should now differentiate between
AEs and ILAAEs. Moreover, the layer activated by an ILA is a better
identifier for the ILA, than the code of the expression and should
therefore be displayed.

4.4.3 Event Timeline. Next to displaying the new event types, the
event timeline is also extended with intervals. These intervals mark
the time intervals at which a layer was active. They therefore start
and end at value-changed events of the underlying AE. These events
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as well as the interval are adapted to link to the methods that are
affected by the layer during this interval.

4.4.4 Dependency Graph. We extended the graph with layer and
layered function nodes. The layer nodes are specialized AE nodes
that show the state of the layer and have the layered function nodes
as children. The layered function nodes show the interface of the
layered method at the currently selected timestamp. The current
interface is recreated by querying the current interface from the
method layer system and going back in time through refine and
unrefine events of all layers. Inactive layers are shown grayed out at
the position in which they would be executed if they were activated.

5 USAGE EXAMPLES
To illustrate the capabilities of the tools, we try to answer questions
that occur while debugging. Taeumel et al [20] proposed six ques-
tions for debugging method layers. We use these questions and try
to answer them with our toolset.

We will reuse the online editor example from section 3.1 with
the onlineLayer which layers the render and save functions of a
text editor to add online synchronization functionality. To better
highlight the features of the tools, we added a second method layer
called darkThemeLayer, which also layers the render function and
toggles the dark theme.

Q1: Which layers refine method M?. There are two points in the
tools that can answer this question. The first point in the tools that
can show which layers refine a method is the dependency graph,
as shown in figure 11. A layeredFunction node shows all layered
methods and has a connection to each layer node that refines it.

The second point is the code annotations at each layered method.
Figure 10 shows these annotations and their context menu, which
gives an overview of all partial layers of the respective method in
order of execution, as well as the layer that created this partial layer.
Hovering a partial layer highlights it in the code when it is in the
same file and selecting an item will navigate to the method. Unlike
the dependency graph, which shows the dynamic runtime state
of the layers, the code annotations offer a static mapping of this
data onto the code. This static mapping aggregates information and
presents it close to the code, to make the data more accessible for
the programmer.

Q2: Which methods are refined by layer L?. Analogous to Q1,
the information on which methods are refined by a layer can be
answered by the code annotations and the dependency graph. The
code annotations add the capability to navigate from an ILA defini-
tion to all its layered methods, as seen in figure 12. In the depen-
dency graph, the methods refined by a layer are simply its children.

Q3/Q4: In which methods can layer L be (de-)activated? This ques-
tion directly maps to the question of which dependencies an AE
has and where they are written. These write locations of depen-
dencies are the precise locations at which the layer condition can
change. Therefore, the same two methods as with AEs can be used.
First, the code annotations link AEs, or in our case, the ILA defini-
tions, to their dependency write locations. Second, the dependency
graph shows the dependencies of an AE, or layer in our case (see
figure 11).

Q5: Which layers are currently active in process P?. All currently
registered layers are listed in the overview of the reactive concept,
as seen in figure 13. Each instance of a layer, also shows if it is active
or not. This is a good entry point for investigating ILA behavior,
as the hierarchical structure gives a quick, but not overwhelming
overview.

Q6: What is the current interface for object O considering active
layers? This question can best be answered by the layeredFunction
nodes in the dependency graph. It shows all partial methods of the
method in the order they are executed, with the proceed calls high-
lighted. Disabled layers are greyed out but appear at the position
where they would be executed if they were activated.

All six questions can completely be answered by the adapted
tools set, which indicates that the toolset can adequately depict the
specialized behavior of ILA.

6 CONCLUSION
In this paper, we presented dedicated tool support for ILA. Instead
of rebuilding the tools from scratch, we leveraged the existing tool
for AE and extended it to cater to its domain-specific needs. In par-
ticular, the tools show the relation of layers and their dependencies
in the object graph, they show the activation history of layers in
the timeline, and they annotate static source code with dynamic
runtime information.

We implemented the tools for ContextJS ILA in the Lively4 devel-
opment environment. We illustrated the usage of the tool suite by
answering typical code comprehension questions for COP systems
known from the literature.
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