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Abstract

Constraints allow developers to specify desired properties of a program in a declarative man-
ner. These properties are solved and maintained automatically by specialized constraint
solvers. This results in clean, compact code, and avoids scattered code fragments to imper-
atively (re-)satisfy desired properties. Despite its advantages, constraint programming is not
widespread, with imperative programming still the norm.

The object constraint programming paradigm attempts to bring constraints to awider audi-
ence by cleanly integrating constraints with object-oriented languages. Object constraint pro-
gramming languages unify the constructs for encapsulation and abstraction by using object-
oriented method definitions for both declarative and imperative code. The Babelsberg de-
sign is a concrete instance of the object constraint programming paradigm and targets object-
oriented programmers who are typically not familiar with constraints. One major goal of Ba-
belsberg is to provide constraints as a practical tool for imperative programmers.

We evaluate how well Babelsberg fulfills this goal with an object-oriented application: an
interactive online game. We implement this application in JavaScript and use Babelsberg con-
straints in appropriate places. We showwhere constraints can improve the readability and un-
derstandability of object-oriented programs.However, we also identify threemajor shortcom-
ings in the design of Babelsberg with regards to object-oriented applications. First, some con-
straints involving high-level objects cannot be solved by any available solver. The attempt to
solve such a constraint may result in inconsistent system states. Second, in contrast to object-
oriented programming, constraint programming strictly separates state and behavior, e.g. by
hiding the solver logic from the programmer. Third, Babelsberg only provides primitive oper-
ations to dynamically enable or disable constraints, yet object-oriented environments demand
frequent changes and adaptability.

To overcome these shortcomings, we refine the current Babelsberg design in three ways. Re-
garding the first issue, we propose a concept that reverts the program to the last valid state
in case of a breaking constraint. To address the second issue, we introduce reactive constraints
that allow to invoke or adapt user-defined behavior once or as long as a condition evaluates to
true, respectively. To tackle the third issue, we treat the context explicitly. All constraints asso-
ciated with a context are automatically enabled as long as the program remains in this context.
Activating the context based on arbitrary boolean expressions results in a convenient scoping
mechanism.

We implement the proposed concepts and illustrate their usage in our example application.
We argue that the proposed concepts represent a useful addition to Babelsberg and to the ob-
ject constraint programming paradigm in general.
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Zusammenfassung

Mit Hilfe von Constraints können Entwickler gewünschte Eigenschaften eines Programmes
auf deklarativeWeise beschreiben. Diese Eigenschaften werden von spezialisierten Constraint-
lösern herbeigeführt und automatisch aufrechterhalten. Dies resultiert in klarem und kom-
paktem Quelltext und verhindert verstreute Quelltextfragmente, die die gewünschten Eigen-
schaften imperativ herbeiführen. Trotz ihrer Vorteile ist die Constraintprogrammierung nicht
weit verbreitet.

Das Ziel der Objektconstraintprogrammierung ist es, den Einsatz von Constraints leichter
zu ermöglichen, indem diese in objektorientierte Sprachen integriert werden. Hierzu verein-
heitlich die Objektconstraintprogrammierung die Konstrukte für Kapselung und Abstrakti-
on, indem sie objektorientierte Methodendefinitionen sowohl für deklarativen als auch im-
perativen Quelltext verwendet. Ein Beispiel für eine Sprache der Objektconstraintprogram-
mierung ist Babelsberg. Babelsberg richtet sich an objektorientierte Programmierer, die typi-
scherweise nicht mit Constraintprogrammierung vertraut sind. Für diese Zielgruppe möchte
Babelsberg Constraints als praxistaugliches Werkzeug bereitstellen.

Am Beispiel einer objektorientierten Anwendung untersuchen wir, ob Babelsberg dieses
Ziel erreicht hat. Wir implementieren diese Anwendung in JavaScript und nutzen Babelsberg
an geeigneten Stellen. Anhand der Implementierung zeigen wir, dass Constraints die Lesbar-
keit objektorientierter Programme verbessern können. Jedoch erkennen wir auch drei Proble-
me Babelsbergs imHinblick auf objektorientierte Anwendungen. Erstens, einige Constraints,
die sich auf komplexe Objekte beziehen, können von keinem verfügbaren Constraintlöser
gelöst werden. Der Versuch diese Constraints zu lösen könnte in inkonsistenten Systemzu-
ständen resultieren. Zweitens, imGegensatz zu objektorientierter Programmierung trennt die
Constraintprogrammierung Zustand und Verhalten strikt voneinander, beispielsweise indem
sie die Logik des Constraintlösers vor dem Programmierer verbirgt. Drittens, Babelsberg stellt
lediglich einfache Operationen zur dynamischen Aktivierung von Constraints bereit. Objekt-
orientierte Systeme hingegen verlangen häufige Änderungen und Anpassungsfähigkeit.

Um diese Probleme zu überwinden, erweitern wir Babelsberg in dreierlei Hinsicht. Das ers-
te Problem kann teilweise gelöst werden, indem im Falle eines fehlschlagenden Costraints das
System wieder in den letzten gültigen Zustand zurückgesetzt wird. Auf das zweite Problem
eingehend führen wir reaktive Constraints ein. Reaktive Constraints erlauben es nutzerdefi-
niertes Verhalten auszulösen oder zu verändern, sobald oder solange eine Bedingung gilt. Für
das dritte Problem nutzen wir ein explizites Kontextobjekt. Alle mit diesem Kontextobjekt
assoziierten Constraints sind solange aktiv wie sich das Programm in diesemKontext befindet.
Kombiniertmit derAktivierungderKontextobjekte basierend auf beliebigenbooleschenAus-
drücken steht somit ein geeigneter Aktivierungmechanismus für Constraints zur Verfügung.

Wir implementieren die vorgeschlagenen Konzepte in JavaScript und zeigen deren Nut-
zung anhand unserer Beispielanwendung. Wir sind der Meinung, dass die vorgeschlagenen
Konzepte eine nützliche Ergänzung zu Babelsberg undObjektconstraintprogrammierung im
Allgemeinen darstellen.
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1 Introduction

Constraints and the constraint programming (cp) paradigm occur in a variety of application
domains, including graphics, CAD/CAM, and planning. A constraint is a desired property of
a program that should hold, and usually represents a state invariant. An important property
of constraints is that they are declarative. Constraints allow the programmer to specify what
should be the case rather than how to achieve it. They are solved andmaintained automatically
by constraint solvers. Constraint solvers typically work on a limited domain and encapsulate
the complexity required to solve for desiredproperties.This results in compact, clean code, and
avoids scattered code fragments to imperatively (re-)satisfy the desired property. Despite its
advantages and long history of research, cp is not widespread, with imperative programming
still the norm.

1.1 Babelsberg, a Practical Constraint Programming Tool for
Object-Oriented Developers?

The object constraint programming (ocp) paradigm attempts to bring constraints to a wider
audience by cleanly integrating constraints with object-oriented (oo) languages. ocp lan-
guages unify the constructs for encapsulation and abstraction by using object-oriented
method definitions for both declarative and imperative code. This allows imperative pro-
grammers to employ constraints using familiar oo constructs.

A concrete instance of the ocp paradigm that this thesis explores is Babelsberg [11]. Babels-
berg is targeted at oo programmers who are typically not familiar with constraints and cp.
One major goal of Babelsberg is to provide constraints as a practical tool for imperative pro-
grammers.

In this thesis, we want to identify to what degree Babelsberg already achieved this goal. To
do so, we evaluate a non-trivial application scenario which is implemented using Babelsberg
in appropriate places. The Babelsberg design is implemented in multiple languages, includ-
ing Ruby [11], JavaScript [12], Smalltalk [19], and Python. Among those implementations
Babelsberg/JS is the implementation that is most advanced and conforming with the Babels-
berg standard specification [13]. Therefore, we chose Babelsberg/JS for the provided sample
application.While implementing the application,we discover threemajor shortcomings of Ba-
belsberg with regards to oo applications. First, some constraints involving high-level objects
cannot be solved by any available solver. The attempt to solve such a constraint may result
in inconsistent system states. Thus, programmers still need to be aware of the limitations of
constraint solvers. Second, Babelsberg and cp languages in general focus on state, not on be-
havior. As a consequence, it is not possible to invoke or adapt user-defined behavior based on
constraints. Thus, programmers can only describe desired state, but no desired behavior, using
Babelsberg. Third, constraints are enabled and disabled more frequently in oo applications
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1 Introduction

than in traditional cp domains. However, Babelsberg only provides primitive operations to
dynamically adapt constraints.

To overcome these shortcomings, this thesis presents refinements to the current Babelsberg
design. To address the first issue, unsolvable constraints, we propose a concept that reverts
the program to the last valid state in case of a breaking constraint. To tackle the second issue,
themissing integration of constraints with behavior, we introduce reactive constraints, i.e. con-
straints that adapt or invoke user-defined behavior once or as long as a condition evaluates to
true, respectively. Regarding the third issue, the need for a powerful scoping mechanism, we
treat the context explicitly. All constraints associated with a context are automatically enabled
as long as the program remains in this context. We then show that these additions are useful
not only in the provided example, but also for ocp languages in general.

1.2 Contributions and Structure of this Thesis

As mentioned before, the goal of this thesis is to move Babelsberg into the direction of a prac-
tically usable ocp language. The contributions are:

• A description of the shortcomings of the current Babelsberg design with respect to oo ap-
plications.

• The design of reactive constraints that integrate constraints with oo behavior.
• An extension of Babelsbergwith a convenient scopingmechanismbased on explicit context
objects.

• The implementation of the designed concepts in Babelsberg/JS.
• A non-trivial application using our extensions and oo constructs in conjunction.
• A discussion of the concepts in comparison with alternative implementation strategies.

In the remainder of this thesis, Chapter 2 covers relevant background such as key concepts
andmajor systems of cp. Chapter 3 surveys several examples created using Babelsberg, of these
all originate from classical cp domains. Chapter 4 provides a non-trivial, oo application sce-
nario and identifies the shortcomings of Babelsberg regarding this example. Concepts to over-
come these shortcomings are presented in Chapter 5. An implementation of these concepts
is explained in Chapter 6. Chapter 7 evaluates the concepts in comparison with alternative
implementation strategies. Related concepts are presented in Chapter 8. Future work and the
conclusions are described in Chapter 9 and Chapter 10, respectively.
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2 Background

This chapter reviews the key concepts of constraint programming (cp) with a particular focus
on constraint imperative programming (cip) and object constraint programming (ocp). We
discuss major cp systems as well as recent efforts to integrate cp into existing languages, with
a focus on the Babelsberg design. Finally, we present a brief overview of the constraint solvers
available to Babelsberg/JS.

2.1 An Incomplete History of Constraint Programming

The earliest notable example of a cp system is Sutherland’s Sketchpad [37] that demonstrates
three of the major features of cp, as described by Wallace [39]: declarative problem model-
ing, efficient search for feasible solutions, and propagation of effects of decisions. Sketchpad
allows to define geometric shapes through a graphical user interface (gui). The first major fea-
ture of cp is declarative problem modeling. The programmer can describe the desired system
state and, thereby, abstract from how this state is accomplished. For instance, Sketchpad en-
ables the user to describe figures declaratively using a number of predefined constraints such
as equal length or parallelism of lines. The usage of constraints allows the definition of more
complex shapes. The second feature of cp is the efficient search for a feasible solution. To do
so, Sketchpad supports three different solvers, including propagation of degrees of freedom, a
local propagation solver, and an iterative relaxation solver. The last two are discussed in more
detail in Section 2.3. If the preferred solver fails, Sketchpad falls back to one of the other solvers.
The third feature of cp is the propagation of effects of decisions: when a constraint system is
modified from the outside, this modification is propagated through the constraint solver. For
instance, in Sketchpad the user canmodify constrained shapes. Then, this change is recognized
by the system which in turn instructs the constraint solver to maintain the constraints.

The three features of cp lead to many early applications related to graphics, like geomet-
ric layouts or user interface toolkits. One such graphical simulation system is ThingLab [5].
ThingLab allows its users to define building blocks and relations using constraints for a given
domain, e.g. a resistor that obeys Ohm´s law. Then, users employ these building blocks to
construct complex simulations, like an electrical circuit using resistors, batteries, and wires, in
a graphical manner. Several different systems could be built and simulated on the basis of con-
straints. ThingLab´s examples range from layouting to simulations of bridges under load. To
solve the resulting constraint systems ThingLab relies on the same system of solvers as Sketch-
pad.

Another declarative programming approach, logic programming, caters to different do-
mains such as simultaneous equations. The integration of constraints into logic programming
languages create the powerful concept of constraint logic programming (clp). One example
is the CLP(R) language [23] that extends the logic programming language Prolog [9] with a
constraint solver for real numbers. This integration opens a way to solve combinatorial prob-
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2 Background

lems involving simultaneous linear equations for simulations and finite-domain problems for
logic puzzles. In consequence, most Prolog systems today contain one or more finite domain
solvers as well as solvers specialized on a particular domain like real numbers.

Constraints over these domains cannot be expressed directly in imperative programming
languages. As a result, the constraints are encoded implicitly and their continuous mainte-
nance is ensured through scattered code fragments. To address this issue, the constraint im-
perative programming (cip) design attempts to syntactically integrate constraints with object-
oriented, imperative languages. Unlike clp, cip supports object-oriented (oo) concepts, in-
cluding classes, mutable objects and object identity, that are familiar to imperative program-
mers.

Kaleidoscope [31] was one of the first languages to integrate constraints and oo concepts
and coined the term constraint imperative programming (cip). Built-in constraints in Kalei-
doscope can only be specified over primitive objects. In addition, Kaleidoscope provides con-
straint constructors to specify user-defined constraints in terms of other user-defined con-
straint or primitive constraints. Constraints can be required or non-required, with multiple
levels of preference. Non-required constraints should be satisfied only if they are not contra-
dictory to required constraints. This is based on the theory of constraint hierarchies [6]. Ad-
ditionally, the duration of constraints can vary from single time usage, over block-wide acti-
vation to constraints that are active for the remainder of the execution. The constraint model
of Kaleidoscope changed over its years of development. Earlier versions, Kaleidoscope’90 [14]
andKaleidoscope’91 [15], are based on themodel of constraints used in clp. In this refinement
model constraint variables are represented by their domain, and constraints add further restric-
tions to this domain. Later versions of Kaleidoscope implement the pertubation model [30].
In this model constraint variables refer to a single object. Destructive assignments invalidate
existing constraints and in order to (re-)satisfy the constraints, the constraint solver changes
the values of connected variables.

In contrast to Kaleidoscope, TURTLE [20] combines not only imperative concepts and
constraints but functional programming concepts as well. TURTLE clearly separates ordi-
nary variables from constraint variables by requiring the programmer to declare both types
explicitly. Ordinary variables participate in a constraint only as constants. Similar to func-
tions, TURTLE introduces user-defined constraints as a unit of reusable constraint statements.
These user-defined constraints may be called from constraint expressions. If ordinary func-
tions are called from constraints, their return value is used as a constant. Like Kaleidoscope,
TURTLE supports required and non-required constraints. Constraints can be globally active,
or scoped to the execution of a code block.

In contrast to Kaleidoscope and TURTLE which are languages themselves, Backtalk [35]
is a library written in Smalltalk [18]. Backtalk is heavily influenced by clp. It provides a
finite-domain constraint satisfaction problem (csp) solver that uses a combination of arc-
consistency and backtracking techniques to reduce complexity. Constraint construction is
syntactically integrated into Smalltalk, allowing arbitrary Smalltalk blocks as constraint ex-
pressions. The domains of constraint variables can contain any Smalltalk object. However,
these constraint variables have to be constructed explicitly. Backtalk showed that the under-
standing of high-level objects can actually increase the performance of csps [33]. This is done
by using a level-wise approach, solving constraints on primitive types first. Thereby, reducing
the domain of higher-level objects, and ultimately improve the performance of high-level
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constraints. Backtalk enables its users to model classical csp systems using oo abstraction.
Available examples include the n queens problem, timetabling variants, logic puzzles, and a
case study on automatic harmonization [34].

To sumup,cpoccurs in a variety of application fields, e.g. layouting, automatic time-tabling,
and physics simulations. cip provides an integration of constraints and imperative languages,
allowing the usage of oo abstractions for constraint construction. However, cip is no break-
through, imperative programming and object-oriented programming (oop) are still the norm.
Nevertheless, cip paves theway formore sophisticated integrations, as described in Section 2.2.

2.2 Recent Efforts in Constraint Programming

ocp picks up and extends the concepts of Kaleidoscope. An ocp language cleanly integrates
constraints into the underlying host language. To do so, ocp languages unify the constructs
for encapsulation and abstraction by only using oo method definitions for both declarative
and imperative code. In contrast, many cip approaches emphasize separate, parallel concepts
to specify constraints, rather than reuse known oo definitions.

A concrete instance of the ocp paradigm is the Babelsberg design [11] which this thesis
extends. The main goal of Babelsberg is to make constraints a useful tool for oo program-
mers. Therefore, Babelsberg provides the fewest number of new keywords, and can be seen
as the smallest increment of existing oo paradigms. In contrast to Kaleidoscope, Babelsberg
provides a much simpler approach. Babelsberg uses ordinary methods and standard method
dispatch, rather than specialized constraint constructors and multi-method dispatch. How-
ever, a method used as a constraint expression is subject to a number of restrictions [13]:

1) Evaluating the constraint expression should return a boolean.
2) The expression that defines the constraint should be free of side effects.
3) Evaluating the constraint expression should be deterministic.

As an example of defining constraints, consider a rectangle object with some unknown in-
ternal structure. The rectangle object provides convenient accessor methods in its application
programming interface, e.g. width, height, and area. We can make use of these methods to
define constraints while respecting object encapsulation. Babelsberg does not only support
simple accessor methods like in this case but also complex, calculated properties. Suppose we
want the rectangle to have a minimum extent, so that it would be visible on screen. Listing 2.1
shows the definitionof a constraint that restricts the extent of the rectangle in bothdimensions
to a certain threshold.

1 always: { rect.width() >= 10 && rect.height() >= 10 }

Listing 2.1: A simple constraint in Babelsberg/JS

In Babelsberg/JS [12], the always expression generates a call to a global constraint construc-
tion function with the given predicate. In Listing 2.1 and the following examples a source-to-
source transformation is used to provide syntactic sugar. Details on the transformation are
described by Section 6.1. The constraint expression can be any statement in the host language,
in this case JavaScript, and may use imperative concepts, such as conditionals, loops, even re-
cursive method calls.
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2 Background

Solving constraints generally is NP-hard, but for certain restricted yet useful classes of con-
straints, more efficient solvers are available. These solvers typically have several restrictions on
what kind of constraints they can solve. In order to cover a wide range of applications with
good performance, Babelsberg makes use of multiple specialized solvers. These solvers can
interoperate to solve a particular problem using an architecture of cooperating solvers. List-
ing 2.2 shows an example for cooperating solvers. The first always expression is equivalent to
the constraint in Listing 2.1, but this time we specify that it should be solved using the Cas-
sowary constraint solver [4]. This solver is capable of solving linear problems over reals. The
second constraint contains a non-linear expression in line 5. It cannot be solved by Cassowary,
so, we ask the system to use the relaxation solver from Sutherland’s Sketchpad to solve it. Both
constraint solvers are discussed in Section 2.3.

1 always: { solver: cassowary
2 rect.width() >= 10 && rect.height() >= 10
3 }
4 always: { solver: sutherland
5 rect.area() >= 1000
6 }

Listing 2.2: Cooperating solvers in Babelsberg/JS

Babelsberg provides several additional features that make constraints useful in a wider area
of domains in particular for imperative languages. First, in the presence of frequent changes
typical in imperative environments, Babelsberg can use, but is not limited to incremental
solvers. These solvers allow to efficiently (re-)satisfy a set of constraints as constraint variables
are modified or constraints are added. Second, Babelsberg allows the definition of read-only
variables. Variables marked as read-only cannot be changed by constraint solvers. The pro-
grammer can still modify them, possibly invalidate certain constraints, and, in turn, cause a
constraint solver to (re-)satisfy these constraints. Third, Babelsberg supports soft constraints
in addition to required constraints. In contrast to required constraints which have to be sat-
isfied, soft constraints introduce several levels of preferences. A weak constraint will only be
satisfied, if there is no contradictory constraint with a higher preference. This feature is useful
for implicit stay constraints created by Babelsberg. Stay constraints are defined on concrete
constraint variables. So, if possible, variable values do not change during constraint satisfac-
tion.Without stay constraints solvers would simply search a fast but unstable solution. Using
stay constraints allow complex systems to remain relatively stable, as expected by imperative
programmers.

In Babelsberg, soft constraints can also be defined by the user. For example, in the domain
of layouting, certain constraints are more favorable than others. In Listing 2.3 we define a con-
straint that is not required, but strongly preferred. We prefer that our rectangle is in portrait
format, if possible.

1 always: { priority: ’strong’
2 rect.height() >= rect.width()
3 }

Listing 2.3: A soft constraint in Babelsberg/JS
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2.3 On Available Constraint Solvers

In brief, Babelsberg aims to provide constraints as a useful tool for oo programmers. oo
programmers can specify constraints in their chosen language using familiar oo concepts.
Thereby, Babelsberg introduces the fewest number of new concepts to oo programmers.

2.3 On Available Constraint Solvers

The power of cp rests on the ability of the constraint solvers to solve and maintain desired
properties. These solvers encapsulate the complexity of solving algorithms and provide a
declarative interface to describe desired properties. However, most solvers are limited to spe-
cific tasks and domains in order to be efficient. Babelsberg/JS supports multiple solvers to
cover a wide range of domains. These solvers are described in the following with their capabil-
ities and configuration needs.

DeltaBlue. DeltaBlue is a local propagation solver that allows to specify multi-way con-
straints [16, 17]. In addition to the constraint expression, the programmer has to specify
propagation functions for each possible way the constraint could be (re-)satisfied. So, unlike
most other solvers DeltaBlue requires the user to specify how to solve desired constraints.
This makes DeltaBlue harder to use, but also very powerful. However, Babelsberg/JS tack-
les the issue of explicitly specifying propagation functions. The current implementation of
DeltaBlue in Babelsberg/JS provides a way to automatically conduct a one-way propagation
function from the given constraint. The constraint variables can be arbitrary objects or primi-
tives. DeltaBlue is an incremental solver that needs linear time during solving with respect to
the number of constraints. When constraints are added or removed, DeltaBlue has to adjust
its execution plan. This takes exponential time with respect to the number of constraints. As
each assignment is modeled as a temporary constraint, one might want to use edit constraints
for variables that frequently change. Edit constraints prepare the solver’s internal structure for
fast resolving when variables change. In case of DeltaBlue, edit constraints allow to mitigate
the recalculation of the execution plan which assignments would normally trigger. DeltaBlue
also supports stay constraints, so complex systems remain relatively stable in the presence of
change.

Cassowary. The simplex solver Cassowary [4] can deal with linear arithmetic. The solver is
restricted to real numbers and supports linear equations and non-strict inequalities, but not
strict inequalities. Solving strict inequalities in the realm of real numbers requires the devia-
tion from the optimal solution to become infinitely small. However, this is not supported in
the binary representation as floats. Despite these restrictions, Cassowary is very efficient. As a
result, Cassowary is mainly used in the domain of responsive user interfaces. Recent work us-
ing Cassowary includes theMacOSX [36] layout specification language and the PythonGUI
frameworkEnaml1. LikeDeltaBlue,Cassowary is an incremental solver.Cassowaryneeds expo-
nential time during constraint construction, but only linear time during solving with respect
to the number of constraints. Therefore, it is a common practice to use edit constraints for
user interaction, e.g. a continuous resizing of the main window. That way, Cassowary’s exe-
cution plan, the simplex tableau, is only calculated once for a sequence of mouse movements.
Additionally, Cassowary supports mandatory and preferred constraints, creating a constraint

1Enthought Inc., Enaml 0.6.3 documentation, http://docs.enthought.com/enaml/ (last accessedApril 30, 2015)
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hierarchy. Stable solutions are especially important in the domain of layouting. Thus, Cas-
sowary supports implicit stay constraints and is optimized for weighted-sum-better solutions
to provide stable layouts. Unlike DeltaBlue, Cassowary can also handle cycles of constraints,
which often occur in over-constrained layouts.

Z3. The Z3 theorem prover [8] is an SMT solver by Microsoft Research. An SMT solver’s
main purpose is to determine whether a given set of formulas is satisfiable. Z3 covers a wide
range of domains, e.g. integers, real numbers, booleans, and even strings. Additionally, own
data types can be defined, making Z3 suitable to solve typical csp tasks. Z3 supports linear
and non-linear arithmetic and boolean logic. Unlike Cassowary or DeltaBlue, Z3 is not op-
timized for incremental use. Each change, regardless whether a constraint is modified or an
assignment occurs, requires a complete recalculation of the variable assignments. Recent ver-
sions of Z3 support soft constraints. This change allows stable solutions, and, in turn, Z3 can
be used effectively in the context of imperative programming. Sample application fields of Z3
include logic puzzles, assignments, and scheduling tasks.

Sutherland’s relaxation. Several relaxation algorithms have been proposed till today. Babels-
berg/JS supports a concrete relaxation solver similar to the one used in Sketchpad [37]. Like
Cassowary, this algorithm operates on real numbers, but unlike Cassowary, this solver can
also solve non-linear equations and inequalities. To do so, the solver needs to be provided
with some error functions. These error functions return a number that indicates how much
the current solution deviates from an optimal solution, i.e. the constraint is satisfied. Using
Babelsberg/JS, this error function can be automatically constructed given a constraint expres-
sion. Given the error functions, an iterative algorithm is used to (re-)satisfy the constraints.
One by one each variable is adjusted according to the error functions. For each error function,
the deviation with respect to the variable is taken. Then, the variable is adjusted a little in the
direction of its deviation. This process is repeated for each variable until the system converges.

This method can easily deal with with over- and underconstrained systems. However, there
are also a number of disadvantages. First, the algorithm does not employ soft constraints. Sec-
ond, assignments are handled as ordinary constraints. Thus, the assigned variable will not al-
ways have the value assigned. This might be unexpected by imperative programmers. Third,
it could take several iterations till the constraint system is satisfied. To deal with this, practical
implementations employ either a timeout, like in Babelsberg/JS, or define an upper bound to
the number of iterations. Hence, this can lead to imprecise solutions. And finally, the system
even may diverge in presence of large input changes. Nevertheless, relaxation found potential
usage in the areas of geometric drawing as well as physical simulations. In the latter case, the
number of iterations is limited on purpose to simulate time-dependent behavior.

Finite-domain constraint satisfaction problem (csp) solver. The final type of solver currently
available in Babelsberg/JS is a finite-domain csp solver similar to the one used in Backtalk.
The solver allows arbitrary constraint expressions over constraint variables of arbitrary do-
mains.However, these constraint variables and their domainsmust be declared explicitly. This
is contrary to the idea of object encapsulation in ocp. Babelsberg/JS assumes certain default
domains to known primitive data types if not declared otherwise.
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2.3 On Available Constraint Solvers

Several algorithms to solve a csp exist.Naïve backtracking typically results in a high runtime
for problems with large domains. So, variants to ensure local consistency are desirable. Arc
consistency can greatly reduce runtime by reducing the domain of variables participating in
a constraint. Currently, this is only supported for constraints with 2 participating variables.
Still, the runtime of a csp highly depends on the concrete constraints and constraint variable
domains.

Typically a csp is solved by returning the first valid solution. No stay constraints are pro-
vided by default. Nevertheless, Babelsberg/JS achieves stable behavior by sorting the values of
a domain by their distance to the current value. Thus, values with minor changes are selected
first. The csp solver provides no support for soft constraints with all constraints considered
as required. Typical application fields for csp solvers include logic puzzles and resource alloca-
tion.
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3 Motivation

Babelsberg aims to provide constraints as a practical tool for object-oriented (oo) program-
mers. We survey the most important example applications created with Babelsberg/JS. We do
this to ascertain to what degree Babelsberg already achieved this goal. We show several short-
comings with respect to the examples that make them inappropriate to verify our initial ques-
tion.

3.1 Sample Applications

Babelsberg/JS features several example applications that originate from various domains. In
order to analyze the capabilities of Babelsbergwe take a look at these examples in the following.

Temperature converter. An interactive temperature converter is one of the classical examples
of constraint programming (cp) systems. The ThingLab system, described in Section 2.1, pro-
vides an equivalent example. Among other sample applications1 the temperature converter is
built in the Lively Kernel self-supporting development environment [22]. Figure 3.1 shows a
screenshot of the application. It consists of two sliders associated with a Celsius and a Fahren-
heit value as well as labels that display the values. A user of the application canmanipulate the
temperature values via the sliders. Changing one value automatically updates all other values.
To achieve this, the four components are connected via the constraints inListing 3.1.These con-
straints ensure data consistency between the values. For instance, in lines 7 and 8 a Cassowary
solver ensures that the handles of the Sliders are restricted to the visible range. Addition-
ally, Cassowary also takes care of the conversion between the Celsius and Fahrenheit values as
stated in line 9. This is possible because the conversion only involves linear equations which
Cassowary is capable of solving.However, Cassowary is incapable of dealingwith string values
needed by the Texts to display the values. To solve constraints over these Texts, the temper-
ature converter uses a second solver, DeltaBlue. Lines 13 and 14 ensure equality between the
string value and the converted value of the respective Slider. Both solvers are able to interop-
erate through Babelberg’s architecture of cooperating solvers. This is also the main showcase
purpose of the example.

Fabric.js layouting. Layouts are easy to describe yet hard to maintain using imperative lan-
guages, making layouting a typical application field of cp. Babelsberg/JS was used to imple-
ment an interactive layouting demo using a fabric.js2 canvas. In this example the user can ma-
nipulate layout components graphically, as seen in Figure 3.2. Additionally, the user can add

1Tim Felgentreff, Babelsberg/JS Demo, http://doi.org/10.1007/978-3-662-44202-9_17 (last accessed April
30, 2015)

2Fabric.js Javascript Canvas Library, http://fabricjs.com/ (last accessed April 30, 2015)
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Figure 3.1: Interactive thermometer demo in LivelyKernel using Babelsberg/JS

1 var f = this.get(’FahrenheitSlider’),
2 c = this.get(’CelsiusSlider’),
3 fl = this.get(’FahrenheitLabel’),
4 cl = this.get(’CelsiusLabel’);
5
6 always: { solver: new ClSimplexSolver()
7 f.getValue() >= 0 && c.getValue() >= 0 &&
8 f.getValue() <= 1 && c.getValue() <= 1 &&
9 (f.getValue() * 100) - 32 == (c.getValue() * 100) * 1.8

10 }
11
12 always: { solver: new DBPlanner()
13 fl.getTextString() == Math.round(f.getValue() * 100).toString() &&
14 cl.getTextString() == Math.round(c.getValue() * 100).toString()
15 }

Listing 3.1: Constraints in the interactive thermometer demo

Figure 3.2: Interactive layouting application using fabric.js and Babelsberg/JS
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constraints using an in-application code editor. When the code in the editor changes, the ap-
plication removes all current constraints on the layout components. Then, the application
creates new constraints by running the user-defined code. These constraints restrict the prop-
erties of the layout components. The user immediately sees the effect of the constraints, and
can manipulate the resulting layout.

1 function horizontalBox(box, children, margin) {
2 function right(rect) {
3 return rect.left + rect.scaleX * bbb.readonly(rect.width);
4 }
5 function bottom(rect) {
6 return rect.top + rect.scaleY * bbb.readonly(rect.height);
7 }
8
9 always: { box.left + margin == children.first().left }

10
11 children.reduce(function(prev, current) {
12 always: { right(prev) + margin == current.left }
13 return current;
14 });
15
16 always: { right(box) == right(children.last()) + margin }
17
18 children.each(function(child) {
19 always: { child.top == box.top + margin }
20 always: { bottom(child) + margin == bottom(box) }
21 });
22 }
23
24 horizontalBox(this.red, [this.yellow, this.green, this.blue], 10);
25 horizontalBox(this.green, [this.orange, this.purple], 10);

Listing 3.2: Constraints to define a nested box layout

Listing 3.2 shows the constraints used to create the nested horizontal box layout in Figure 3.2.
Themain functionality of this example is provided by the horizontalBox function. This func-
tion gets an enclosing Rect, a list of child Rects, as well as the desired margin around the child
Rects. It takes several constraints to create a horizontal box layout. First, in line 9 the left side
of the first child and the enclosing box are declared to be equal considering the given mar-
gin. Next, we constrain each two subsequent child Rects in line 12. To be precise, the right
side of the first Rect should be equal to the left side of the next child considering the margin.
Fabric.js does not support a right attribute by default. Similar, fabric.js does not provide a
bottom attribute. So, lines 2 to 7 declare convenient accessor methods to overcome this short-
coming. These methods simplify the access to the right and bottom coordinates needed to
define a horizontal box layout. The width and height attributes are marked as read only using
bbb.readonly to disallow solvers to change them. This is necessary, because fabric.js expect its
users to not change these values. Later, the right side of the rightmost child is constrained to
the right side of the enclosing box in line 16. This concludes the horizontal alignment of the
child Rects. However, the vertical alignment is still missing. So, the top and bottom of each
child are aligned to the enclosing box in lines 19 and 20. Now, in lines 24 and 25 we use the
horizontalBox function to actually create a nested horizontal box layout. Figure 3.2 shows
the resulting layout.

Multiple solvers are able to solve layout constraints such as the horizontal box layout. How-
ever, different solvers have varying capabilities and perform differently well on this task. As

13



3 Motivation

Figure 3.3: Wheatstone bridge simulation in LivelyKernel using Babelsberg/JS

described in Section 2.3, one can use Cassowary as long as the desired constraints are linear. In
contrast, Sutherland’s relaxation solver can also solve non-linear constraints. In the application
the user can choose a solver to solve the layout from a list of available solvers. Using different
solvers in such an interactive application allows to understand the difference in their behavior.

Circuits. Physics simulations are yet another typical field of applications of cp. For instance,
Figure 3.3 shows an example application of an electrical circuit simulation which contains bat-
teries, resistors, and meters. In this example the user can copy parts by dragging them from
the right panel and drop those parts into the circuit. Then, the user can wire parts together
through their leads. Each part carries certain physical laws such as Ohm’s Law, Kirchhoff’s
Voltage Law, and so forth. These laws are represented by constraints. As seen in Listing 3.3,
constraints are constructed when a part is instantiated. In this example an oo mechanism, in-
heritance, allows to reuse certain more general constraints. For example, all parts are subject
to Kirchhoff’s Current Law which states that the algebraic sum of currents meeting at a point
is zero. Therefore, the constraint representing this law is defined in the constructor of all part
types base class TwoLeadedObject in line 5. Then, derived classes can specify part-specific rules
in their respective constructor method. For instance, a Voltmeter displays the electrical poten-
tial difference between its two leads, as specified in line 33. All constraints are linear in this
example, so the Cassowary constraint solver is able to solve all constraints occurring in the cir-
cuit. Due to its incremental nature, Cassowary can efficiently (re-)solve the constraint system
if the user modifies the circuit. This happens every time the user either adds new parts to the
circuit or edits values of existing parts.

3.2 Problem Statement

The previous section highlights some examples using Babelsberg/JS. These examples show the
power of abstraction that the object constraint programming (ocp) paradigm provides. How-
ever, we realize that every example originates from the domain of cp. Accordingly, the exam-
ples share some common characteristics. These characteristics make the examples inappropri-

14



3.2 Problem Statement

1 Object.subclass(’TwoLeadedObject’, {
2 initialize: function() {
3 this.lead1 = { voltage: 0.0, current: 0.0 };
4 this.lead2 = { voltage: 0.0, current: 0.0 };
5 always: { this.lead1.current + this.lead2.current == 0.0 }
6 }
7 });
8 TwoLeadedObject.subclass(’Resistor’, {
9 initialize: function($super, resistance) {

10 $super();
11 this.resistance = resistance;
12 always: { this.lead2.voltage − this.lead1.voltage == this.lead2.current ∗ resistance }
13 }
14 });
15 TwoLeadedObject.subclass(’Battery’, {
16 initialize: function($super, supplyVoltage) {
17 $super();
18 this.supplyVoltage = supplyVoltage;
19 always: { this.lead2.voltage − this.lead1.voltage == supply }
20 }
21 });
22 TwoLeadedObject.subclass(’Wire’, {
23 initialize: function($super) {
24 $super();
25 always: { this.lead1.voltage == this.lead2.voltage }
26 },
27 });
28 TwoLeadedObject.subclass(’Voltmeter’, {
29 initialize: function($super) {
30 $super();
31 this.readingVoltage = 0.0;
32 always: { this.lead1.current == 0.0 }
33 always: { this.lead2.voltage − this.lead1.voltage == this.readingVoltage }
34 }
35 });

Listing 3.3: Constraints for physical behavior in the circuits demo

ate to evaluatewhether Babelsberg achieved its goal of being a useful tool for ooprogrammers.
These common characteristics are discussed in the following.

In the examples, all constraints are typically defined in a single method. Listing 3.1 and List-
ing 3.2 show this issue for the thermometer and the layout demo. This common pattern as-
sumes that it is possible to define all constraints globally and that the method has access to all
relevant components. The method attaches constraints from the outside of objects. It is un-
clear to which object the respective constraint belongs. While this single method approach is
sufficient for small examples, it is not modular and in turn hard to extend.

The circuit example is the only example that supports decentralized constraint construction.
By defining constraints in their respective constructors, each class is in charge of defining rele-
vant constraint using their local knowledge. This makes the circuit demo more modular and,
thus, more extensible in comparison to the other examples.

For most examples, defining all constraints in a single function is possible, because con-
straints alone are able to describe the whole application behavior of a typical cp problem.
All presented examples are based on some oo code. Then, the respective application intro-
duces several constraints to to restrict those objects. Thereby, the constraint solvers imple-
ment all relevant application logic. As a consequence, objects serve as simple data holders.
The objects have minor tasks such as render themselves based on the values provided by the

15



3 Motivation

constraint solver. However, this common pattern also assumes that all behavior is expressible
as a constraint, and that one or more cooperating solvers are able to solve the resulting con-
straints. This assumption holds in a typical cp system. In such systems the only thing that
matters is state. All behavior to modify the state is encapsulated in the used solvers. In con-
trast, object-oriented programming (oop) interweaves state and behavior. Thus, objects be-
come functional units instead of simple data holders.

Because constraints can express the complete logic of a typical cp application, little inter-
action with the rest of the code is required. This interaction only happens implicitly in the
form of state changes. In particular, constraints can only interact with the surrounding sys-
tem by modifying the system’s state, but cannot call dependent components directly. This is
no problem, if dependent components continuously read the possibly modified values, e.g.
the fabric.js layout example introduces an additional rendering loop. In contrast, Babelsberg
integrates poorly with event-based systems, as the rerendering cannot be triggered in this sce-
nario. The main problem here is that Babelsberg modifies primitive attributes of objects di-
rectly rather than through the object’s application programming interface.

A reason why constraints can solve the whole application logic in the examples is that all
examples deal with the same underlying problem, data consistency. Even if the application
domains of cp range from layouting to electric circuits, the underlying problem of those do-
mains is data consistency, just in different flavors. In order to let the user interact with the data
most examples provide a graphical user interface (gui) to access and manipulate the underly-
ing model.

Another common observation is that, in nearly every example, constraints are enabled just
once and almost never disabled again. In fact, we only found disabling in the form of a com-
plete reset of all active constraints. For instance, when modifying the specified constraints in
the layout example, the system resets all previously specified constraints. Even the circuit ex-
ample which defines constraints in a local scope does not provide amechanism to unconstrain
a single part. Instead, the user can only clear all objects at once. So constraints might be added,
but not removed or dynamically changed in the examples, even though such features are avail-
able to Babelsberg. The main reason for this is that most examples originate from constraint
logic programming (clp) domain that has nomutable state in nature. In this domain it makes
no sense to adapt or disable constraints as this would introduce mutability which does not ex-
ist in declarative logic. In contrast, mutability is a familiar concept to most oo programmers.
Objects can be consistent or inconsistent, and are able to switch between states. This funda-
mental difference implies that oo programmers might want to use constraints in a different
manner. oo systems are more dynamic that their cp counterpart. Accordingly, constraints in
an oo system might demand dynamic adaptation. However, we could not verify the useful-
ness of dynamic constraints regarding these cp examples only.

Another factor to consider in all previous issues is thatmost examples are relatively small, so
some problems described in this section never occur. For example, a singlemethod that defines
all constraints suffices if the system is small enough. However, once the application grows to
a certain size, modularity becomes important to manage and maintain the code. Due to their
small size, other issues such as maintainability and adaptability are never problematic in the
existing examples.

One reason for the small size of the examples is that the purpose of these examples is often to
present a particular feature. The use case is often so focused that a single solver is able to solve
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the whole problem. For instance, the thermometer example showcases the architecture of co-
operating solvers. In order to show this feature clearly, the problem is simple and restrictive.
Complex situations in which not everything can be solvedwith the available constraint solvers
never occur, as all examples are from solvable cp domains. In contrast, oo applications incor-
poratemultiple domains and have complex objects and relationships rather than just primitive
data types.

To sum up, we discover that all examples available originate from the domain of cp. In con-
sequence, all example problems share some common characteristics such as a global system
state and conceptual immutability. These characteristics make it easy to describe the example
systems using constraints only. Thus, cp is obviously useful in these examples. Babelsberg can
contribute to those problems by providing convenient abstraction using oomechanisms like
encapsulation and information hiding. However, Babelsberg furthermore aims to be a useful
tool for imperative programmers. Because cp is fundamentally different from oop, we can-
not conduct whether Babelsberg already fulfills its goal using these examples alone. To verify
whether Babelsberg is suited for its goal, we provide a non-trivial application scenario from an
oo domain. Using the example which is described in Chapter 4, we want to answer how cp
can contribute to oo problems and highlight possible shortcomings of Babelsberg.
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4 A Non-Trivial Application Scenario

To evaluate how well the current Babelsberg design fulfills its goal of providing a practical
constraint programming (cp) tool for object-oriented (oo) developers, we explore a typical
oo application: an interactive online game. First, we describe the desired game mechanics of
our game prototype. Then,we shortly discuss possible architectures for the game and inwhich
parts of the implementation Babelsberg comes in handy. Finally, we identify shortcomings in
the current Babelsberg design that prevent Babelsberg from being even more useful.

4.1 Game Description

The game which we want to implement using Babelsberg/JS is an adaption of the tanks mini
game in Wii Play1, with some small additions to the game such as the introduction of power
ups. Figure 4.1 shows a screenshot of the finished game.

Basic game mechanics. In this game, the player navigates a small toy tank through 2d levels
with obstacles. The player tank as well as enemy tanks can fire bullets. The object of a level is
to destroy all enemy tanks while avoiding their attacks. When this goal is achieved, the game
advances to the next level which has a different combination of enemy tanks and a different
level layout. If the player tank is destroyed, the level restarts in its original configuration. Aside
from environmental obstacles a level can contain three different types of objects: tanks, bullets,
and power ups.

Tanks. Small toy tanks are the main entities in this game. They are either controlled by the
player or by the game in case of enemy tanks. When a level starts, tanks are placed according
to the current level into the environment. Tanks have a direction of movement andmove into
that direction with a constant speed which can also be zero. A tank can rotate its body and
turret independently. This makes it possible to move and aim at the same time. Tanks can
shoot a number of bullets at the same time.After its launch a bulletmoves independently from
its respective tank. If the number of bullets launched by a tank exceeds that tank’s maximum
number of bullets, this tank is unable to shoot until one of its bullets is destroyed.Additionally,
it is not possible shoot directly into a wall.

Bullets. Bullets are launched by tanks and then keep flying into the direction they were
launched. When a bullet hits a wall, it may ricochet off that wall. However, it may only rico-
chet a specific number of times, once by default. The ricochet is subject to the law of reflection
which states that the direction of an incoming object and the direction of the reflected object

1Nintendo Co. Ltd., Wii Play, http://www.nintendo.com/sites/software_wiiplay.jsp (last accessed April 30,
2015)
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Figure 4.1: Screenshot of the sample application

have the same angle with respect to the surface normal. This reflection is the only way to ad-
just a bullet’s direction. Bullets destroy tanks or other bullets they touch. When that happens,
the bullet itself is also removed from the environment. Bullets can also destroy the tank that
launched them. The speed of bullets varies and is determined by the type of the shooting
tank. However, fast bullet, despite their speed, share the same properties as other bullets. For
example, they can be destroyed by any other bullet.

Power ups. Power ups are objects that temporarily give tanks particular abilities. Power ups
appear at the start of a level in a level-specific pattern. Each tank can collect a power up by
touching it. Then, the power up entity disappears and benefits the tank for a certain amount
of time. Bullets fly through power up without interacting with them. Power ups are static
entities, i.e. they do not move on their own. Tanks can have multiple power ups of different
types at the same time, combining their benefits. If a tank collects an already active power up,
the effect duration is prolonged. The game features three types of power ups: a shield, a spring,
and a slime power up.

• The shield makes the tank invincible. As long as this power up is active, bullets cannot de-
stroy the tank.

• The spring provides the tank one additional bullet ricochet, i.e. all bullets the tank launches
bounce off walls one additional time while this power up is active.

• The slime affects all other tanks. They cannot move while this power up is active.
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Table 4.1: Tank type statistics in our example game
Tank Speed Bullets Ricochets Bullet Speed Movement Intelligence Aiming Intelligence

Player (Green) Normal 3 1 Normal Varies Varies
Yellow Immobile 1 1 Normal - Random
Red Slow 2 1 Normal Avoids walls Mildly seeks player
Blue Slow 1 0 High Avoids walls & bullets Strongly seeks player

Interactions. The previously described entities interact in several different ways depending
on their types. The following enumeration describes the concrete interactions:

• Tanks push each other if they collide.
• If a tank touches a bullet both are destroyed and removed from the environment.
• Tanks collect power ups by touching them. The power up disappears and gives the respec-
tive tank a power up-dependent effect for a certain amount of time.

• As with tanks, bullets destroy each other once they collide.
• Bullets and power ups as well as power ups themselves do not interact at all.

Levels. The levels in which the game takes place are tile-based fields. Each level is composed
of three types of tiles: walls, holes and plains. These tiles differ in what type of entities can pass
it and which entities collide with tiles, as described in the following:

• Walls are impassable by any entity.
• Holes are impassable for tanks, but bullets can fly over holes.
• Plains are passable by any entity.

Controls. The player controls themovement of its tank using the arrow keys. Themovement
is limited to 8 directions. Aiming and shooting are handled via mouse input. More precisely,
the player tank’s turret always points into the direction of the mouse pointer. Additionally, a
crosshair graphic follows themouse and indicates the direction inwhich the tankwould shoot
bullets. Clicking the left mouse button causes the tank to launch a bullet into the direction of
the mouse pointer.

Enemy types and behavior. The game features four different kinds of tanks which can be
identified by their color.The abilities and the behavior of the different tank types vary, as stated
in Table 4.1. For example, the blue enemy tank moves at slow speed but shoots fast bullets. In
its movement the blue tank avoids walls as well as bullets if necessary. Its turret always faces
towards the player tank, becausewith zero bullet ricochets the blue tank can only hit the player
directly. The number and combination of enemy tanks vary depending on the current level.

Modes. At any given point in time, the player has the possibility to switch to the editormode.
In the editor mode the game is paused, yet, the current level is still visible. In addition to this,
a tile-based cursor appears. By clicking the left mouse button the player can modify the type
of the tile under the cursor. Using this feature, the player can adapt the shape of the level as
seen in Figure 4.2. Additionally, our game features a debug mode. In debug mode the game
renders additional information such as the velocities of the entities and their line of fire. Both
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Figure 4.2: Screenshot of the editor mode

modes, the debug mode and the editor mode, can be activated and deactivated by the press of
a button.

4.2 Design

This section briefly summarizes the most important parts of this game’s implementation.
We have chosen a direct approach for this game’s implementation in keeping with common
JavaScript practices. An alternative, more elaborate architecture is given in Section 4.3. When
the game starts, all level descriptions and assets are loaded. When the loading finishes, we
initialize a game object and start a simple game loop. Upon initialization, the game instructs the
creation of relevant services such as an Input service as well as a Renderer. The game keeps track
of the current level. A World instance represents the level which is constructed by a dedicated
builder. Additionally, the game is in charge to delegate the game loop to relevant components
and services.

The World represents the current level and keeps track of a tile-based Map aswell as all GameOb-
jects as illustrated in Figure 4.3. Each Tile represents a specific terrain that is passable by cer-
tain types of GameObjects. We provide physics and rendering functionalities in GameObject,
the superclass for all entities, because all entities described in Section 4.1 share those function-
alities. We use simple sprite sheet-based animations for the rendering of GameObjects. Each
graphical asset is divided into multiple frames which a Renderer draws over time according
to the frameSequence of the respective Animation, as depicted by Figure 4.4. For the physical
behavior the GameObject has corresponding attributes such as a position, a direction and a
speed attribute as well as a radius for collision detection. During each frame the position is
updated according to the object’s direction and speed. Manipulating the physical behavior is
the task of each respective subclass. Additionally, Tanks contain attributes to handle its turret,
we also make use of a separate Controls object. This object handles the behavior of the Tank
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which is either controlled by the player or the program. Furthermore, Tanks hold all necessary
information to be able to instantiate Bullets.

4.3 Design Alternative

One possible alternative design is to use an architectural pattern like an entity component
system which was introduced by the game development community2. An entity component
system is a data-driven approach that consists of three types of objects to handle the game logic:
entities, components, and systems. An entity refers to a coarse game object as a separate item
and serves as a bag of components. These components are simple data classes for a specific
aspect of that entity. Attaching a component to an entity labels it as possessing this particu-
lar aspect. Systems are the functional units of this design. Each system refers to the subset of
all entities that posses certain aspects, i.e. components. For example, suppose a TimeIntegra-
tionSystem refers to all entities that hold a Position and a Velocity component. Then, in

2Scott Bilas, AData-Driven GameObject System, GameDeveloper Conference 2002, http://scottbilas.com/
files/2002/gdc_san_jose/game_objects_slides.pdf (last accessed April 30, 2015)
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Figure 4.5: Main components of an entity component system

each time frame the system iterates through all matching entities and adds the velocity to the
position vector. Many entity component systems like the Ash framework3 introduce an ad-
ditional type of objects, called nodes. Nodes ensure that systems only access the components
they are allowed to as nodes only reference the components specified by the system. This leads
to a coarse-grained architecture as illustrated in Figure 4.5.

The concept of entity component systems overcomes the two major shortcomings of the
entity component pattern4. The first major shortcoming is the feature envy of components
on some data handled by another component. A common example is the position attribute
that is typically part of a physics-related component. A rendering component needs access to
this attribute in order to render the entity appropriately. However, the rendering component
can only access the respective data through the physics component. This violates the concept
of independent components. A second shortcoming is that the entity component pattern can-
not handle interactions betweenmultiple entities well, as this pattern focuses on independent
components. In contrast, an entity component system can handle this issue easier because sys-
tems can access all relevant entities.

Entity component systems offer an architecture suited for game programming. However,
they are inappropriate to verify our initial question, whether Babelsberg is suited for oo pro-
grammers.This is due to the fact that entity component systems are data-driven.Therefore, en-
tity component systems share several characteristics with traditional cp systems as discussed in
Section 3.2. Suppose our game example to involve a CollisionSystem as depicted in Figure 4.6.
To handle collisions the CollisionSystem refers to entities that have a Transform as well as a
Collider component attached to them. In this case, the playerTank and the enemyTank Entity
both match that condition. In its update routine the CollisionSystem iterates all matching
entities through the according Node objects. The CollisionSystem calls its detectCollision
method to check whether a collision exists. If that is the case, a second method resolveCol-
lision handles the collision appropriately by modifying the data stored in the components.
As this example illustrates, in an entity component system architecture systems encapsulate all
functionality, just like constraint solvers do in cp. As a consequence, components are simple

3Richard Lord, Ash Entity System Framework, http://www.ashframework.org/ (last accessed April 30, 2015)
4Bob Nystrom, Game Programming Pattern: Component Pattern, http://gameprogrammingpatterns.com/

component.html (last accessed April 30, 2015)
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data holders which do not implement any game logic.With this intentional separation of data
and behavior entity component systems become too similar to Babelsberg’s previous examples
described in Section 3.1.

A second reason for entity component systems to be inappropriate for us is that constraints
introduce logic to nodes and components. Suppose we want to express the functionality of
the CollisionSystem using constraints. To do so, we can specify a constraint that the distance
between the positions of the playerTank and the enemyTank should be greater than the sum of
their radii, assuming that their Colliders are spheres. Now, the logic of the detectCollision
and resolveCollisionmethods is moved to a constraint attached to nodes and components,
as illustrated in Figure 4.6. However, this is contrary to the idea of entity component systems
because the constraint introduces game logic to the data objects. Additionally, it is unclear
which object initialized the constraint and at what point of execution. So, instead of using a
dedicated architecture we prefer a simpler and more object-oriented design.

4.4 Involving Constraints

This section highlights possible parts of the application that can benefit from the usage of
constraints. As described in Section 2.3, most solvers are limited to a specific domain. So, these
solvers only apply to specific types of problems.While building our game,we found its physics
an appropriate problem to be expressed as constraints. Listing 4.1 shows a constraint that takes
care of the collision detection and resolution between tanks. Line 2 states that the distance
between the two tanks should be greater than the sum of their radii, i.e. they do not overlap.
Sutherland’s relaxation solver is appropriate to solve the constraint.However, we discover two
shortcoming when using the constraint. First, the constraint would only cover a collision be-
tween two Tank objects. In contrast, the collision between any other two types of GameObjects
involve custombehavior and, therefore, cannot be solved by any available solver. Nevertheless,
the collision detectionmechanism for all cases involve the same condition. Letting Babelsberg
handle the collision between two Tanks while manually detecting and resolving all other col-
lisions seems inconvenient with regards to code reuse. Second, using relaxation the collision
resolution results in imprecise or unstable collisions. In contrast, we expect a precise pushing
behavior. Our solution to overcome both issues is described in Section 7.1

1 always: { solver: new Relax()
2 tank1.position.distance(tank2.position) >= tank1.radius + tank2.radius
3 }

Listing 4.1: Specify that two tanks should not overlap

As stated in Section 3.2, constraints are useful to ensure data consistency. In oo programs
these data consistency needs are typically solved by a data flow mechanism. This fact suggests
that we can use constraints to declaratively model data flow in our application. Due to its abil-
ity to support arbitrary domains, DeltaBlue seems to be the best fit for this task. To illustrate
this, consider the following situation in our example: In the game we make use of two differ-
ent coordinate systems, a screen coordinate system and a world coordinate system. The input
as well as the rendering are handled in screen coordinates, the game logic takes place in world
coordinates. A camera-like Viewport manages the segment of the World that is visible for the
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user. Therefore, the Viewport is responsible for converting between screen and world coordi-
nates. To determine which segment of the World is rendered, the Viewport has two attributes,
the middlepoint and the extent of the segment. For convenience, we want to access the posi-
tion of the mouse in world coordinates without explicitly converting the mouse position to
world coordinates on every access. To do so, we can define the constraint stated in Listing 4.2.
Line 2 specifies that the position of the input should be always equal to the mouse coordi-
nates converted to world coordinates. As stated in Section 2.3, Babelsberg can automatically
derive a one-way propagation function from the given constraint to solve the constraint us-
ing DeltaBlue. So, DeltaBlue enables us to specify unidirectional data flows using high-level
abstraction, i.e. constraints state what the data flow should achieve.

1 always: { solver: new DBPlanner()
2 input.position.equals(viewport.screenToWorldCoordinates(input.mouse))
3 }

Listing 4.2: Constraint to ensure that themouse position on screen and the respective position inworld
coordinates are consistent

In contrast, using ordinary data flowmechanisms one has to explicitly specify the data flow
with its starting point, its end point, and the mapping function. In Listing 4.3 we use At-
tributeConnections available in LivelyKernel [29] to create an equivalent data flow. One can
create an AttributeConnection using the method lively.connect. This method gets an ob-
ject and a field name as the first two parameters to define the starting point of the data flow.
When this value is changed, the fifth parameter, a mapping function, is applied to the new
value. Then, the result is assigned to the object’s attribute specified by the third and fourth
parameter. Note, that we actually have to define three AttributeConnections to correctly up-
date the world position of themouse. Lines 1 to 3 create an AttributeConnection to listen and
update on amousemovement.However, the Viewport itself can also bemodified. So, we need
the two additional connections from line 4 to 9 to cover this case. This explicit data flow can
potentially violate object encapsulation and information hiding as it requires the programmer
to know the internal structure of objects. Another fact to consider is that the mouse position
as well as the Viewport’s attributes are complex objects, vectors. So in addition to the existing
AttributeConnections, we have to explicitly install and maintain connections for each spe-
cific coordinate of the existing vectors. Babelsberg takes care of this issue by default, because
listeners are added to all relevant attributes. Additionally, Babelsberg maintains the listeners
automatically if a complex object is assigned.

1 lively.connect(input, ’mouse’, input, ’position’, function(screenPosition) {
2 return viewport.screenToWorldCoordinates(screenPosition);
3 });
4 lively.connect(viewport, ’middlepoint’, input, ’position’, function() {
5 return viewport.screenToWorldCoordinates(input.mouse);
6 });
7 lively.connect(viewport, ’extent’, input, ’position’, function() {
8 return viewport.screenToWorldCoordinates(input.mouse);
9 });

Listing 4.3: Data flow to ensure that the mouse position on screen and the respective position in world
coordinates are consistent
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Wediscover that a programmer ismore encouraged to store redundant datawhenusing con-
straints as in the previous example. Typically, programmers avoid redundant data as one has to
keep the data consistent manually. However, Babelsberg allows to model the relationship be-
tween data explicitly. Therefore, data consistency is achieved more easily and redundant data
become less error-prone. In addition to the presented example, we make use of DeltaBlue to
ensure data consistency in the following parts in our game:

• The crosshair graphic should always stay at the mouse screen position.
• Additional target line graphics are placed between the crosshair graphic and the player tank
interpolated by specific values.

• The player tank’s turret should always point to the mouse position.
• In editormode the tile-based cursor should always point to the tile under themouse pointer.

4.5 Open Issues in Babelsberg Design

In the previous section we highlight how Babelsberg can be applied in a classical oo environ-
ment. Yet, we also discover a couple of shortcomings that prevent Babelsberg from being even
more useful. In this section we discuss concepts missing in Babelsberg to fit the requirements
of a typical oo environment.

Constraints without capable solvers. Constraints provide the largest benefit when addressing
properties that are easy to describe, yet hard to solve. To solve and maintain constraints cp
relies on the power of the available constraint solvers. However, most solvers are limited to a
set of primitive types. In contrast, many problems in an oo environment deal with complex
objects. Suppose we want to specify a constraint to avoid a tank from driving through walls
and holes. The respective constraint is described in Listing 4.4. The constraint is easy to under-
stand, but themethod getTile involves an array lookup for a Tile depending on the position
of the tank. To solve this constraint, the tank’s position has to be updated in a way that the
array lookup would return an appropriate Tile. Unfortunately, no available solver is capable
of such an implication. Such specific problems often occur while programming in an oo en-
vironment. As a consequence, a practical way to deal with constraints that no available solver
can solve is needed.

1 always: { map.getTile(tank.position).canWalkThrough() }

Listing 4.4: Hypothetical constraint to ensure that a tank moves only in passable tiles

Strict separation of state and behavior. In cp only state matters as described in Section 3.2.
All necessary behavior to achieve the desired state is encapsulated inside the respective solvers.
As a consequence, cp strictly separates state and behavior. In addition, the user of a cp lan-
guage can only specify the desired state, but no functionality. This approach is fundamentally
different from object-oriented programming (oop) which connects state and behavior. Sup-
pose we want to define the following functionality: when a bullet hits a wall, then the bullet
bounces off this wall. In ordinary cp systems this functionality is not expressible as it would

28



4.5 Open Issues in Babelsberg Design

involve user-defined behavior, yet, most solvers only have limited and predefined logic. Defin-
ing this behavior in oo language requires implicit checks and calls to the desired functionality.
This is similar to the fact that oop maintains desired constraints implicitly through scattered
code fragments. The object constraint programming (ocp) paradigm addresses this particular
issue by making the constraints explicit. Yet, ocp does not allow statements about the desired
behavior. To better integrate constraints and oop a way to connect desired state and behavior
is desirable.

A convenient scoping mechanism. As stated in Section 3.2, earlier examples using Babelsberg
originate from the domain of constraint logic programming (clp). In the domain of clp
adapting or disabling constraints would introduce mutability. However, mutability is a con-
cept that does not exist in declarative logic. In contrast,mutability is a familiar concept tomost
oo programmers. oo systems change during the execution of a program and can become con-
sistent or inconsistent. For example, certain properties may only be desired for a portion of
the program execution. Babelsberg already supports the activation and deactivation of a con-
straint. However, constraints are currently manipulated using the low-level methods enable
and disable on a constraint object. Using these methods, one has to create a constraint and,
at some later point in the execution, explicitly activate the constraint depending on whether
an if-condition evaluates to true. To safely disable constraints one has to wrap the respective
portion of the code in a try-finally block. As one want to frequently enable and disable con-
straints, such an explicit manipulation of constraint objects quickly becomes unfeasible. So,
a structured and high-level construct to enable constraints only during a particular scope is
desirable. In the spirit of Kaleidoscope Babelsberg/R supports an assert-during construct
which takes a closure and activates a constraint during the evaluation of the closure. While
this mechanism allows for control-flow specific constraints, one would also want to manipu-
late constraints based on the current context of the system, e.g. disable some constraints while
a level is edited. Surely, constraints should allow or even encourage dynamic activation and
deactivation. Therefore, a practical way to scope constraints is required.
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Object-Oriented Environments

Section 4.5 identified three shortcomings in the current Babelsberg design: a missing mecha-
nism to deal with constraints unsolvable by any available solver, the missing ability to invoke
or adapt behavior based on constraint, and the need for a convenient scopingmechanism.This
chapter describes concepts to address these shortcomings.

5.1 Continuous Assertions

One of the fundamental assumptions of constraint programming (cp) is that problems are
typically easy to describe, but hard to solve. To solve andmaintain desired properties cpmakes
use of constraint solvers. However, these solvers have limited domains and functionality, even
when combiningmultiple solvers using an architecture of cooperating solvers as in Babelsberg.
So, some problems cannot be solved using the available constraint solvers, especially when
dealing with high-level objects in object constraint programming (ocp).

When a constraint is not solvable by any available constraint solver, the programmerhas two
possibilities. First, the programmer could solve and maintain the invariant manually as in an
ordinary object-oriented (oo) language. However, doing so one would lose all advantages of
ocp even with ocp available. Second, the programmer can encapsulate the needed function-
ality in a new solver. In addition to problem-specific solving routines, the programmer has to
implement solver specific constraint variables and primitive constraint objects required for the
constraint construction. So, writing a specific solver for each problem puts an additional load
on the programmer and, therefore, seems unfeasible for typical oo programmers.

To find a practical solution to this problem,we investigate how the always statementworks.
As depicted in Figure 5.1, defining a constraint with predicate p separates the domain of the sys-
tem state into two categories, valid and invalid system states. The figure shows the successive
states in the execution of a program. An ocp application is typically in a valid state, as defined
by its constraints. When an assignment moves the system state into the invalid portion, a con-
straint solver is called in order to (re-)solve the violated constraint. So, the system moves back
into a valid state in terms of constraints. Note, that this program state is typically different
from the previous one, because assignments are modeled using temporary constraints. The
invalid state is temporary and only visible by the constraint system.

At its core the always statement prevents the constraint expression from becoming inval-
idated by employing constraint satisfaction techniques. If no solver is available to maintain
a certain constraint, another solution is required to bring the system back into a consistent
state. One solution to this issue is to revert the system back into its previous state. So, if an
assignment attempts to invalidate a certain constraint, the assignment will be discarded. If the
condition is already violated on constraint construction, the construction of the constraint
will fail.
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Figure 5.1: System state trajectory adjusted by a constraint created using the always statement

Using this concept allows us to describe expected invariants of our system.Then, Babelsberg
checks the expected invariants during the execution of the program. This behavior is similar
to the assertion statement which is available in many programming languages. Similar to as-
sertions we check for a specific condition. In spite of this, assertions only check a condition at
a single point during execution, whereas our statement checks the desired invariant continu-
ously. We call this concept continuous assertion.

We argue that for certain types of problems, preventing the system from entering an erro-
neous state suffices. In contrast to the always statement which enforce invariants, continuous
assertions check for and prevent invalid system states without any repair attempts. In spite of
this, both statements are quite alike. This fact suggests a similar notation. This unified nota-
tion is further covered by Section 5.4.

One should only use continuous assertions if the following two criteria are met.

• No available solver is able to deal with the constraint in a sufficient way.
• Reverting invalid statements is a valid option for the program. Continuous assertions can
revert assignments, yet, this behavior might be unfamiliar to oo developers.

5.2 Reactive Constraints

As stated in Section 4.5, cp and object-oriented programming (oop) treat behavior differently.
While cp strictly separates state and behavior, oop integrates them. As ocp attempts to unify
both paradigms, it has to deal with this fundamental difference. Babelsberg already allows to
use arbitrary function expressions to define constraints, yet, constraints can only modify the
state of a program, not its behavior. In this section we describe concepts to connect state de-
scribed by constraints and oo behavior to push the integration of ocp forward. From our
example, we identified two distinct cases how behavior can be related to constraint expres-
sions: invoke a piece of behavioras soon as a constraint expression evaluates to true, and adapt
behavioras long as an associated constraint expression holds. In the following we discuss both
cases separately.
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Figure 5.2: A trigger constraint invokes the given callback when the system reaches a state in which the
corresponding constraint expression evaluates to true

5.2.1 Trigger Constraints: Invoke Behavior Depending on Constraint Expressions

Similar to the maintenance of invariants, the invocation of behavior upon a condition is typ-
ically managed implicitly by scattered code fragments in oop. For example, a certain event
should be emitted once a condition is met. ocp treats the first issue bymaking the desired con-
straint explicit. We address the second issue, triggering behavior on a condition, in a similar
way, i.e. by making the desired functionality explicit. Therefore, we introduce the concept of
trigger constraints. Using a trigger constraint, one can explicitly specify that a given piece of
behavior should be invoked once a given condition evaluates to true.

1 predicate(function() {
2 return input.pressed(”leftclick”);
3 }).trigger(player.fireBullet.bind(player));

Listing 5.1: Trigger constraint to launch a bullet once the player presses the left mouse button

As an example, suppose we want to express the following functionality of our game: when
the player presses the leftmouse button, then the player tank should launch a bullet. Listing 5.1
shows how a trigger constraint specifies this behavior using the unified notation described in
Section 5.4. Line 3 specifies the callback that should be invoked. In this case, the fireBullet
method should be called with the player bound as this context. Line 2 shows the constraint
expression of the trigger constraint, namely, whether the input service recognizes a left click
of the player. Figure 5.2 depicts when the callback is called depending on the result of the
constraint expression. As shown in the figure, every time the system enters a state in which the
constraint expression is fulfilled from a state in which the constraint expression is not fulfilled,
Babelsberg invokes the callback. So, before the callback can be called again, the system has to
leave the space of states in which the constraint expression is fulfilled. When reentering this
space, the given callback is called again. When this happens, Babelsberg invokes the callback
before execution of the next statement. If the constraint expression is already fulfilled during
the construction of the trigger constraint, the given callback is immediately invoked.
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Figure 5.3: System state trajectory augmented by an activator constraint

5.2.2 Activator Constraints: Adapt Behavior Depending on Constraint Expressions

Games frequently involve dynamic changes of the system’s behavior depending on various
conditions. Certain functionality can be restricted to a specific game mode, e.g. velocities are
only rendered in debug mode. As with trigger constraints, we want to specify the relation
between the behavior adaption and the condition explicitly. So, we introduce the concept of
activator constraints. Using activator constraints, one can specify that a certain adaption in
behavior applies as long as a given condition holds.

1 var powerUpLayer = new Layer().refineObject(tank, {
2 getBulletRicochets: function() {
3 return cop.proceed() + 1;
4 }
5 });

Listing 5.2: Constructing a cop layer with partial behavior

Note, that activator constraints rely on an additional concept to dynamically adapt behavior.
The concept of context-oriented programming (cop) [7, 21] provides such amechanism. cop
provides means to associate partial behavior definitions with explicit context objects, layers.
Layers can be activated or deactivated during the execution of a program, usually based on
the control flow.When a layer is activated, the partial behavior definitions become part of the
respective objects and classes until the deactivation of the layer. cop enables dynamic adaption
and variation in behavior based on the current context. To illustrate this, consider the spring
power up described in Section 4.1. The spring power up causes all bullets of the affected tank
to bounce off walls one additional time. This functionality can easily be expressed using layers
as in Listing 5.2. Line 1 creates a layer and associates a partial object definition to this layer.
Lines 2 to 4 augment the method getBulletRicochets of the tank object by incrementing
the result of the original function by one. In addition to the definition of the layer and the
partial behavior, one has to activate the layer in order for the adaption to take place. A layer
is typically de-/activated globally or for the dynamic extent of a function invocation. Such
mechanisms only allow control flow-specific scoping. However, adaptions can also depend
on scopes other than control flow such as conditions on the current state of the program. As
with trigger constraints, we want to treat the condition associated with a context explicitly.
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We imagine activator constraints to activate a given layer as long as the associated constraint
expression is fulfilled, as illustrated by Figure 5.3. Once we reach a state in which the constraint
expression is fulfilled, the layer is activated until the constraint expression evaluates to false.
Then we deactivate the respective layer again.

As a continuation of the spring power up example, suppose the benefit of the power up
is of limited duration. So, the power up is only active until its time is running out. We use
a dedicated Timer class to keep track of time in our example. Using activator constraints, we
can connect an instance of this class with the previously defined powerUpLayer, as shown in
Listing 5.3. In line 2 we define the condition that the remainingTime attribute of the timer is
greater than zero. Next, we connect this condition with the powerUpLayer and, thereby, create
the desired relation in line 3.

1 predicate(function() {
2 return timer.remainingTime > 0;
3 }).activate(powerUpLayer);

Listing 5.3: Activator constraint to activate a power up for a specific amount of time

We use layers as units of dynamic behavior adaption because of the following reasons:

• cop treats context objects, layers, explicitly. These context objects can easily be activated
based on a condition.

• cop is no special solution dedicated to JavaScript, but has been implemented inmany other
languages such as Lisp, Smalltalk, Python, Java, andRuby. So, Babelsberg implementations
in languages other than JavaScript can also base on the very concept of cop.

• Aside partial object and class definitions cop layer can act as units of scoping for constraints
as well, as described in Section 5.3. Being able to use constraints to activate layers and layers
to scope constraints provides additional synergy effects between both concepts.

Appeltauer et al. compare several cop implementations as well as their activation means [1].
We argue that constraint expressions represent a flexible layer activation mechanism which
is decoupled from the control flow of the program. Section 8.2 deals with the comparison
between activator constraints and event-based as well as implicit layer activation techniques.

5.3 Scoped Constraints

As stated in Section 3.2, cp typically focuses on describing a global system state. In contrast to
cp, oop revolves modularization of system state and dynamic adaption. Babelsberg already
provides means to dynamically adapt constraints. Still, these means are limited to the low-
levelmethods enable and disable. As explained in Section 3.2,manipulating constraints using
such low-level techniques is unfeasible for larger systems. In case of Babelsberg/R, one can ac-
tivate constraints during the dynamic extent of a code block. Yet, this mechanism is control
flow-specific. In Section 5.2.2 we introduced activator constraints as a mechanism to activate
cop layers based on arbitrary conditions. So far, layers have been used as convenient units of
scoping to adapt behavior. However, as we integrate constraints and oo concepts, the require-
ments of an oo environment start to apply to constraints as well. Constraints should be able
to adapt dynamically as behavior does. So, similar to partial class and object behavior, we in-
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troduce scoped constraints, i.e. constraints associated with a cop layer. One can associate layers
with constraints as one would dowith partial behavior. Similar to partial behavior definitions,
scoped constraints take effect as soon as the associated layer becomes active. Deactivating the
layer again causes the constraints to be disabled. That way, the constraint is enabled as long as
the associated layer is active.

To exemplify the concept of scoped constraints, suppose the following functionality of our
game example for the tile-based cursor in the editormode: as long as the game is in editormode,
this cursor should always refer to the Tile under the mouse pointer. To cleanly separate the
editormode from the rest of the game, the editormode is represented by a dedicated layer, the
EditorLayer. This layer crosscuts all relevant modules to implement the editor mode, includ-
ing the constraint described above. Listing 5.4 shows the definition of this constraint. First,
line 1 states that the following predicate is associated with the EditorLayer. Line 2 specifies
that the tileIndex of the editor mode cursor, and so its position, should be equal to the
mouse position converted to tile-based coordinates. Finally, lines 3 to 5 ensure that this con-
straint expression will be fulfilled using an instance of the DeltaBlue constraint solver. The
whole definition causes the desired behavior to only take place in editor mode.

1 EditorLayer.predicate(function() {
2 return cursor.tileIndex.equals(map.positionToCoordinates(input.position));
3 }).always({
4 solver: new DBPlanner()
5 });

Listing 5.4: Scoped constraint to make the cursor graphic hover over the tile under the mouse pointer
while in editor mode

As an additional advantage, layers can groupmultiple constraints due to their cross-cutting
aspect. So, one can structurally en-/disablemultiple constraints related to the same context. In
conclusion, cop provides constraints the variability needed in an oo environment.

5.4 A Unified Notation for Constraint Specification

Currently, most Babelsberg implementations provide two new primitives for constraint con-
struction, always and once. For instance, the always expression followed by a block with the
constraint expression is used to construct a global constraint in JavaScript. To do so, an ap-
propriate call to the global always function is created via a source code transformation. All
constraints constructed through always are enabled immediately. However, this type of def-
inition only allows to define global constraints as usual in cp applications. As we introduce
trigger, activator, and scoped constraints to better fit constraints into oo systems, a unified
notation to cover all presented concept is desirable.

In contrast to the currently used notation for constraints, we treat constraint expressions
explicitly. To do so, we propose a single global method, predicate. This method takes a func-
tion as parameter and returns a corresponding ConstraintExpression object. A Constraint-
Expression provides methods to construct actual constraints:

• The once and alwaysmethod return an ordinary constraint.Options, e.g. the solver to solve
the constraint, are passed as parameter as in the old notation.

• The assertmethod returns a continuous assertion instead of an ordinary constraint.
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• The trigger method takes a callback as parameter and returns the respective trigger con-
straint. Listing 5.1 shows an example of this method.

• The activate method takes a layer as parameter and returns the respective activator con-
straint. Listing 5.3 exemplifies the usage of this method.

To enable scoping, we extend layers to provide an additional method, predicate, that works
like its global counterpart but returns a scoped constraint expression instead of a global one.

We argue that the described notation using constraint expressions as separate entities has
several advantages:

• The notation allows to reuse a constraint expression. With the introduction of trigger and
activator constraints reusing the very same constraint expression becomes plausible. For in-
stance, suppose an activator to activate a layer. If the system needs additional setup for the
behavior variation, this setup could be provided using a trigger constraint on the same con-
straint expression.

• The notation allows to decouple the constraint declaration from the actual usage. In con-
trast, the old notation tightly bound both together. So, constraint expressions become a
first class entity. Functions can take constraint expressions as parameters or return them.
For example, Listing 5.5 shows how the predicate used in Listing 5.3 can be provided by a
dedicated function. This allows to hide the concrete implementation of the constraint ex-
pression inside the object that provides the constraint expression.

1 Object.extend(Timer.prototype, {
2 untilTimeout: function() {
3 this._untilTimeoutExpression = this._untilTimeoutExpression || predicate(function() {
4 return this.remainingTime > 0;
5 });
6
7 return this._untilTimeoutExpression;
8 }
9 });

Listing 5.5: Expression that a Timer has not reached a timeout encapsulated in a dedicated method

5.5 Open Issues

Integrating the concepts of cop andcp leads to several issues about their semantics. Each ques-
tion allows for multiple valid answers as the expectation of the programmer depends on the
concrete use case. None of the following three issues is relevant to our game use case.

The first issue is concerned with what happens when two activator constraints refer to the
same layer. This question can be solved in multiple ways:

1) The layer is active if one or more of the activator constraints evaluate to true.
2) The layer is only active if all associated activator constraints evaluate to true.
3) Treat an activator constraint as an equivalent always constraint as in Listing 5.6. Line 2 en-

sures that Babelsberg keeps the layer active if the constraint expression becomes true.When
a second activator constraint is defined, the values of layer.isActive() and both activator
constraints are maintained to be equal by Babelsberg.
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4) Trying to define an activator constraint for a layer that is already associatedwith an activator
constraint raises an error.

1 predicate(function() {
2 return layer.isActive() == activatorConstraint.isFulfilled();
3 }).always();

Listing 5.6: An activator constraint modelled as an always constraint

The second issue regards the integration of activator constraints and control flow-based acti-
vations of a layer. As a concrete question: what happens if a layer that is associated with an
activator constraint is activated manually?

1) Trying to manually activate a layer that is associated with an activator constraint raises an
error.

2) The manual layer activation fails silently.
3) The activator constraint is modelled as an always constraint. The manual activation causes

Babelsberg to solve the constraint expression of the activator constraint.

Note, that the semantics of both issues are clear when using the layer activation semantics of
ContextJ [2] or JCop [3]. In these implementations of cop activating a layer multiple times
causes the variation in behavior to be applied multiple times. So, activating a layer twice, re-
gardless whether the activation is manual or by the means of activator constraints, applies the
behavior adaption twice.

For the third issue, suppose an activator constraint refers to a layer. The constraint expres-
sion of the activator constraint evaluates to true and, therefore, the layer is active.What should
happen when the activator constraint is now disabled?

1) Disabling an activator constraint deactivates the layer.
2) Disabling the activator constraint has no effect on the layer. The layer holds its current state

and stays active even if the constraint expression of the activator constraint becomes false,
because the activator is disabled.

Currently, our implementation holds the last state of the layer until the layer is adjusted man-
ually or by the means of another activator constraint as in the first option.
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This chapter explains the implementation of the concepts described in Chapter 5 in JavaScript.
The implementation of these concepts requires the extension of two existing libraries: Babels-
berg/JS [12] and ContextJS [28]. First, we explain the construction and maintenance of con-
straints in Babelsberg/JS. Second, we describe the extension to Babelsberg/JS to enable con-
tinuous assertions, trigger constraints, and activator constraints. Last, we show how to extend
ContextJS layers in order to support scoping of constraints.

6.1 Constraint Construction and Maintenance in Babelsberg

In this section we briefly explain how a constraint is constructed in Babelsberg/JS. As a simple
example, suppose we want to specify that the y coordinate of a point object pt is twice as big
as its x coordinate. Listing 6.1 shows the constraint. As this constraint is linear, we can use
the Cassowary constraint solver to solve the constraint as done in line 1. Line 2 contains the
actual constraint expression. Babelsberg/JS employs a preprocessing step to ready the code
for execution. This preprocessing step applies a transformation to the source code before its
actual execution. The Babelsberg/JS source code transformation emits the appropriate call to
the library as seen in Listing 6.2. Additionally, the source code transformation adds a context
object to the function call. This object contains all variables that are directly referenced by the
function. In order to interpret the constraint expression the interpreter requires this context
object.

1 always: { solver: new ClSimplexSolver()
2 pt.x * 2 == pt.y
3 }

Listing 6.1: A simple constraint before source code transformation

1 bbb.always({
2 solver: new ClSimplexSolver()
3 ctx: {
4 pt: pt
5 }
6 }, function() {
7 return pt.x * 2 == pt.y
8 });

Listing 6.2: A simple constraint after source code transformation

When calling Babelsberg/JS’s alwaysmethod, the given function is delegated to a JavaScript
interpreter alongside contextual information. When a constraint is evaluated, the normal exe-
cution by the interpreter is adapted using a layer, the ConstraintConstructionLayer. In order
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to intercept accesses and assignments to relevant variables later during execution, interpreta-
tion modified by this layer wraps properties with property accessors. For example, to get the
value of a variable, the accessors returns the appropriate value from a constraint solver. How-
ever, during constraint construction Babelsberg/JS does not use these accessors but returns a
ConstrainedVariable object instead. To get a specialized ConstrainedVariable for a concrete
solver, its constrainedVariableFormethod is invoked.The solver returns a ConstrainedVari-
able if the interpreter tries to access a value of a type supported by the specific solver. For in-
stance, when accessing the x coordinate of the point object, Cassowary returns a Constrained-
Variable as a stand-in for the Number value. Any messages are sent to this object instead of
calculating values. Each ConstrainedVariable has a set of supported methods. These meth-
ods are used to create primitive constraint objects that can be satisfied using the solver. As
a consequence, the interpreted constraint expression returns a specific constraint object that
supports the enable and disable methods. When a constraint was successfully created, this
constraint is immediately enabled and solved.

Besides constructing and solving a constraint once, another important feature of an always
constraint is the automaticmaintenanceof thedesired relation.Todo so, the installedproperty
accessors intercept when a new value is assigned to a property wrapped with a property acces-
sor. In this case, the suggestValuemethod of the corresponding ConstrainedVariable object
is called. To solve the assignment Babelsberg creates a temporary equality constraint between
the variable and its new value. However, this change could affect the whole constraint system.
Babelsberg finds all constraints with the modified variable. Babelsberg repeats this process for
all variables of all constraints found in the previous step, and so on.This process stops once the
convex hull of the assignment is found. In order to solve the constraints, Babelsberg sorts all
participating solvers according to their weight. Then, the solver with the highest weight solves
all of its constraints using its specialized solving algorithm. Babelsberg continues to solve the
constraint system with the next solver. However, all variables referenced by previous solvers
are marked as read-only. As a consequence, a solver cannot modify variables assigned by previ-
ous solvers. This process continues for all remaining solvers. As a result, the constraint system
is satisfied and the regular program execution can proceed with the next statement.

Limitations of the current implementation. Babelsberg/JS is an implementation of the ob-
ject constraint programming (ocp) paradigm provided as a library without any VM support.
Such an implementation has several requirements on the host language [12]. One of those
requirements is that the host language must support means to intercept variable lookup. Ba-
belsberg/JS uses property accessors to meet this requirement. However, this technique only
supports object fields, and cannot intercept local variables. Additionally, some fields of built-
in types, such as the length attribute of Arrays, do not support property accessors. Another
requirement is that the host language must provide means to modify the interpretation of
a block. As described in this section, Babelsberg/JS uses an augmented JavaScript interpreter
for constraint construction. Yet, this interpreter cannot access any variable scoped in a closure.
As a consequence, Babelsberg/JS cannot instrument any method refined by ContextJS, be-
cause ContextJS employs scoped variables. In addition, current state of the art, browser-based
JavaScript modules, asynchronousmodule definitions, cannot be instrumented if themodule
definition uses locally scoped variables.
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Figure 6.1: Hierarchy of solvers representing additional concepts

6.2 Utilizing the Architecture of Cooperating Solvers to Implement
Additional Concepts

In order to implement the concepts described in Chapter 5, we want to extend the existing
Babelsberg/JS library. However, we want to apply the least possible changes to Babelsberg/JS.
To do so, we search for points of variation in Babelsberg/JS. We identified constraint solvers
as such a point, because Babelsberg is meant to be extended using additional solvers. To be
specific, we can utilize the architecture of cooperating solvers to implement the concepts as
additional solvers. Doing so allows to decouple the existing Babelsberg/JS from the additional
concepts and requires onlyminor changes to Babelsberg/JS itself. Additionally, the implemen-
tation as solvers allows an easy integration with existing behavior, because both use the same
techniques. The described concepts, continuous assertions, trigger constraints, and activator
constraints, share the samedomain of arbitrary objects andprimitive types theywork on.They
only differ in their solving behavior. Accordingly, we implement a shared solver superclass, Re-
activeSolver, for all these concepts. This superclass deals with the necessary communication
with Babelsberg/JS. As depicted by Figure 6.1, each concept is provided by a solver class that
inherits from ReactiveSolver and implements its own means to fulfill the desired property.

When one of the constructs is used, a new solver instance of the respective class is created,
e.g. a TriggerSolver. Then, Babelsberg/JS’s alwaysmethod is invoked, and instructs the inter-
pretation of the given constraint expression using available context information and the solver
instance.When accessing a field upon interpretation, Babelsberg/JS calls the constraintVari-
ableFor method of the given solver as explained in Section 6.1. The ReactiveSolver returns
a ReactiveConstraintVariable for every object and primitive value, regardless the type of
the accessed value. As a consequence, arbitrary constraint expressions are supported. In con-
trast, ordinary solvers only construct constraint variables for particular types and values, e.g.
Cassowary only supports Number values. Additionally, a Cassowary constraint variable only re-
sponds to certain operations such as +, ∗, and ==. On the contrary, ReactiveConstraintVari-
ables do not respond to any operation, instead, the logic is passed back to the Babelsberg/JS
interpreter. However, constructing a constraint variable for each field access also allows sim-
ple constraint expressions over field accesses that do not involve any calculation. As a result of
the interpretation, the Babelsberg/JS constraint is created and all property accessors delegate
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Figure 6.2: Execution order to solve constraints depends on the solver’s weight

to an appropriate ReactiveConstraintVariable. One has to keep inmind that Babelsberg/JS
expects each constraint expression to evaluate to true. This is typically enforced by the always
statement. Yet, trigger and activator constraints do not require the expression to evaluate to
true. Babelsberg/JS considers a constraint expression that evaluates to false as an unsatisfiable
constraint and raises an error. Therefore, we added the option allowFailing for this very case.
This option is automatically set when using our solvers.

Aside from constructing constraints, the other main task of Babelsberg is to maintain the
desired properties. Therefore, the solve method of a solver is called when a constraint is en-
abled, usually immediately after its construction, or a ConstrainedVariable is modified. Both
cases invoke the solve method that is implemented for each concrete solver. Figure 6.2 de-
picts the order in which the additional concepts are executed in relation to ordinary solvers.
The order of execution is determined by the weight of the solvers in descending order. First,
Babelsberg/JS processes ordinary solvers. They maintain the user-defined constraint system.
Next, Babelsberg/JS checks all continuous assertions. Finally, trigger and activator constraints
may invoke or adapt behavior depending on the evaluation result of their constraint expres-
sions. To ensure this particular order, AssertSolvers have a lower weight than any ordinary
solver, and TriggerSolver and ActivatorSolver have an even lower weight.

ContinuousAssertion Solver. Acontinuous assertion prevents the program fromentering an
erroneous state as described in Section 5.1. To do so, the solver checks whether the given pred-
icate is fulfilled as illustrated in line 2 of Listing 6.3. If that is not the case, the solver throws
a specialized error as seen in line 3. This error causes Babelsberg/JS to break out of its solving
routine. Canceling the solving routine causes all downstream trigger and activator constraints
to be omitted as the failed assertion detects that the program has entered an inconsistent state.
Additionally, the error instructs the ConstraintVariable to revert to its previous value, or
disables the constraint that causes the error. Currently, reverting the state is limited to assign-
ments which suffices in basic cases.

Trigger Solver. Trigger constraints promise that a given piece of behavior will be invoked as
soon as a given condition becomes true. To do so, the solver keeps track of whether the predi-
cate was fulfilled during the last evaluation as seen in line 7 of Listing 6.4. Initially, the solver’s
previoslyFulfilled attribute is set to false. As specified in line 4, if the given predicate is now
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1 solve: function() {
2 if(!this.constraint.predicate()) {
3 throw new ContinuousAssertError(this.message);
4 }
5 }

Listing 6.3: The solvemethod of the AssertSolver

fulfilled but was not during last evaluation, the given function should be invoked. To invoke a
function, Babelsberg/JS adds the function to a list of callbacks as in line 5. These callbacks are
called at the end of the entire solving routine. So, callbacks can modify ConstraintVariables
and, in turn, cause Babelsberg/JS to solve constraints again.

1 solve: function() {
2 var predicateFulfilled = this.constraint.predicate();
3
4 if(predicateFulfilled && !this.previouslyFulfilled) {
5 bbb.addCallback(this.callback, this.constraint.bbbConstraint, []);
6 }
7 this.previouslyFulfilled = predicateFulfilled;
8 },

Listing 6.4: The solvemethod of the TriggerSolver

Activator Solver. Activator constraints apply a certain adaption in behavior as long as a given
condition holds. To do so, the solver checks whether the evaluation result of the condition co-
incides with the layer activation status. So, if the condition is fulfilled but the layer is currently
deactivated, the solver activates the layer as seen in lines 5 and 6 of Listing 6.5. In the same way,
if the layer is active but the condition evaluates to false, the solver deactivates the layer as stated
in lines 7 and 8.

1 solve: function() {
2 var layerIsGlobal = this.layer.isGlobal(),
3 predicateFulfilled = this.constraint.predicate();
4
5 if(predicateFulfilled && !layerIsGlobal) {
6 this.layer.beGlobal();
7 } else if(!predicateFulfilled && layerIsGlobal) {
8 this.layer.beNotGlobal();
9 }

10 },

Listing 6.5: The solvemethod of the ActivatorSolver

An alternative implementation strategy. Another way to implement the described concepts
without altering the Babelsberg/JS library at all is to implement a separate library. However,
this new library also has to employ a JavaScript interpreter like Babelsberg/JS does. This results
in code duplication. Additionally, the interaction between ordinary constraints and our new
concepts would suffer. For instance, the execution order of both librariesmight depend on the
order of specificationof the concepts.Tobe specific, consider a trigger constraint and an always
statement with the same constraint expression. The correct execution order of the solver and
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the trigger is crucial if an assignment invalidates the constraint expression. If the trigger is pro-
cessed first, the assignment would reset the trigger. Next, the always constraint resatisfies the
constraint expression. Then, the trigger invokes its callback, because the constraint expression
evaluates to true again. In contrast, if the always constraint is processed first, the constraint
expression would be resatisfied immediately. As a consequence, the trigger is not reset, thus,
no callback is invoked.We argue that implementing the additional concepts as separate library
would lead to less predictable behavior as exemplified.

6.3 Using ContextJS Layer to Scope Constraints

Scoped constraints are only enabled as long as an associated layer is active. The implementa-
tion of scoped constraints is twofold. First, we need to provide means to create constraints
associated with a layer. Second, constraints have to be enabled and disabled when the associ-
ated layer is activated and deactivated, respectively.

To create a constraint associated with a layer, we added the method predicate to the class
Layer. This method creates and returns a LayeredPredicate as seen in line 3 of Listing 6.6. A
LayeredPredicate contains all information that is necessary to create a Constraint just like
ordinary Predicates as explained in Section 5.4. Additionally, the associated Layer is stored
as shown in line 4 of Listing 6.7.

1 Object.extend(Layer.prototype, {
2 predicate: function(func, opts) {
3 return new LayeredPredicate(func, opts, this);
4 },
5 _enableConstraints: function() {
6 this._constraintObjects.forEach(function(cobj) {
7 cobj.enable();
8 });
9 },

10 _disableConstraints: function() {
11 this._constraintObjects.forEach(function(cobj) {
12 cobj.disable();
13 });
14 }
15 });

Listing 6.6: Extention of the ContextJS Layer class

1 Predicate.subclass(”LayeredPredicate”, {
2 initialize: function($super, func, opts, layer) {
3 $super(func, opts);
4 this.layer = layer;
5 },
6 always: function($super, opts) {
7 opts.postponeEnabling = !this.layer.isGlobal();
8 var cobj = $super(opts);
9 this.layer._constraintObjects.push(cobj);

10 return cobj;
11 }
12 });

Listing 6.7: Parts of the LayeredPredicate class definition
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A Predicateprovidesmethods to create actual constraint objects. The lines 6 to 11 exemplify
this for themethod always. First, line 7 sets the postponeEnabling attribute in the options ob-
ject depending on whether the associated layer is active. We added the postponeEnabling op-
tion to be able to prevent Babelsberg/JS from immediately enabling newly created constraints.
Then, the constraint is constructed in the usual manner in line 8. Thereby, the constraint is
only enabled if the layer is already active. Next, we add the constraint to a list of constraints
associated with the layer as shown in line 9. Finally, we return the created constraint. To sum
up, the method creates a constraint and associates it with the layer.

The second portion of the implementation regards the dynamic adaption of constraints
when the activation state the associated layer changes. To do so, we extend the activation
methods of ContextJS. For instance, Listing 6.8 shows how the global activation of a layer is
extended. First, we call the layer’s _enableConstraintsmethod. This method enables all con-
straint objects associatedwith the layer as shown in lines 5 to 9 inListing 6.6. Then,we proceed
with the original function. The methods for global deactivation as well as control flow-based
activation are extended in the same way.

1 cop.enableLayer = cop.enableLayer.wrap(function(callOriginal, layer) {
2 layer._enableConstraints();
3 return callOriginal(layer);
4 });

Listing 6.8: Global layer activation extended to activate associated constraints
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This chapter evaluates the appropriateness of the concepts proposed in Chapter 5 for the sam-
ple application described in Section 4.1. Additionally, we present alternative solution strategies
and discuss advantages and disadvantages regarding our concepts. Each section of this chapter
is structured as follows. First, we describe a concrete challenge in the implementation of the
example game. Next, we present an implementation of this particular problem using one or
more of our proposed concepts. Then, we describe an alternative implementation using other
appropriate concepts. Finally, we compare both implementations.

Note, thatwedonot evaluate the two following concepts in this chapter. First,wedonot dis-
cuss theusageof regular constraints in this chapter. Section4.4describes howweuseDeltaBlue
constraints as a high-level abstraction of traditional data flow mechanisms in our sample ap-
plication. Second, we do not evaluate continuous assertions. Continuous assertions allow to
dealwith otherwise unsolvable constraints in certain, restricted situations. Section 5.1 discusses
two possible alternatives: to develop a dedicated solver for each of such problems, or to use
scattered code fragments to maintain the desired properties. While the first option presents
an unnecessary overload especially for object-oriented (oo) developer, we lose all advantages
of constraint programming (cp) using the second option.

7.1 Collision Detection using Trigger Constraints

Problem. The example game features three different types of entities: tanks, bullets, and
power ups. In the process of the game, entities move and eventually collide with each other.
When that happens, an entity-dependent collision resolution should be invoked, e.g. a bul-
let colliding with a tank destroys both entities. To be specific, the problem is to implement
a mechanism for collision detection and then apply a given collision resolution procedure in
response.

We choose collisiondetection and resolution as an example for complex interactions of game
objects and their environment. Especially in game development objects frequently have to re-
act to a certain state of the program.

Solution. To handle arbitrary responses to collisions the GameObject provides the onColli-
sionWithmethod as seen in Listing 7.1. Themethod is called on a Gameobjectwith two param-
eters: a second GameObject and a response to the collision of both. To implement this method
we use a constraint expression that specifies whether both objects overlap as seen in lines 4
to 6. Then, we create a trigger constraint that invokes the given callback once the constraint
expression evaluates to true in lines 6 to 8.

Alternative. Alternatively, we could make use of a topic-based messaging system which is
a frequently used approach in game development. In a topic-based messaging system objects
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1 onCollisionWith: function(other, callback) {
2 var that = this;
3
4 return predicate(function() {
5 return that.position.distance(other.position) <= that.radius + other.radius;
6 }).trigger(function() {
7 callback.call(this, that, other);
8 });
9 },

Listing 7.1: Method onCollisionWith to specify how a collision between two GameObjects is handled

can subscribe callbacks to a topic of their interest. Additionally, objects can emit concrete mes-
sages related to a topic. As a consequence, all subscribed callbacks are invokedwith the specific
message as parameters.

Applied to our example, this solution requires a physics component that checks for colli-
sions during the execution of the game loop. As seen in lines 4 to 12 in Listing 7.2, the method
checkCollisions iterates twice over all game objects and checks for a collision of each two
game objects. If a collision occurs, the corresponding objects are stored. Then, for each stored
collisionwe emit amessage of the appropriate topic as shown in lines 14 to 16. Listing 7.3 shows
the implementation of the onCollisionWithmethod in this variant. As seen in line 4, we sub-
scribe to the appropriate topic. However, we have to check whether the colliding objects are
the objects of interest before invoking the given callback as shown in line 5.

1 checkCollisions: function() {
2 var collisions = [];
3
4 this.gameObjects.each(function(object1, index1) {
5 this.gameObjects.each(function(object2, index2) {
6 if(index1 <= index2) { return; }
7 if(object1.position.distance(object2.position) <= object1.radius + object2.radius) {
8 collisions.push([object1, object2]);
9 collisions.push([object2, object1]);

10 }
11 });
12 });
13
14 collisions.each(function(collision) {
15 topic(’collision’).emit(collision);
16 });
17 },

Listing 7.2: Collision detection in a topic-based messaging approach

1 onCollisionWith: function(other, callback) {
2 var that = this;
3
4 topic(’collision’).subscribe(function(object1, object2) {
5 if(object1 === that && object2 === other) {
6 callback(that, other);
7 }
8 });
9 },

Listing 7.3: Method onCollisionWith using a topic-based messaging approach
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Comparison. By comparing both variants we discover two major advantages of trigger con-
straints over themessaging system. First, trigger constraints allow to specify the reactive behav-
ior explicitly.On the contrary, themessaging systemuses an additional layer of indirection, the
topic. Topics are a powerful decouplingmechanism, yet the connection between cause and ef-
fect becomes less clear. Second, the detection mechanism of the messaging system variant is
limited. To be specific, this variant checks the condition only once per frame. Suppose a tank
pushes another tank into a power up as a response to the collision of both tanks. The collision
with the power up is not handled until the next frame. In contrast, triggers automatically in-
tercept every statement that may change the condition. As a consequence, trigger constraints
invoke the callback correctly as soon as the given condition becomes true.

7.2 Power Ups using Layers and Activator Constraints

Problem. Power ups are one of the three entity types in our example game. When a tank
collects a power up by touching it, the power up enhances the tank’s abilities for a limited
time. ContextJS layers provide a convenient way to express behavioral variation. The problem,
however, is to find an appropriate activation mechanism to dynamically activate the layer in
this scenario.

Power ups represent an example of context-dependent behavior variation. Thereby, con-
texts are frequently defined by a condition such as in this example.

Solution. Figure 7.1 shows the architecture we use to handle power ups and their temporal
benefits. A separate class, the Collectible, handles the appearance and physics of a power up.
When a collision with a tank occurs, the Collectible is removed from the level and activates
the PowerUp. An activated PowerUp creates a new Timer for the combination of tank and power
up type , or resets a Timer if already existent. Listing 7.4 shows the Timer class whichmeasures
time intervals.As seen in lines 6 to 8, in its constructor the Timer creates a constraint expression
that indicates whether a timeout occurred or not. Because we handle constraints as first-class
entities, the PowerUp can use this untilTimeout constraint expression provided by the Timer.
Next, this constraint expression is used to activate the behavior variation of the PowerUp as seen
in Listing 7.5. The effect is implemented in each subclass of PowerUp using a layer to refine
the tank’s behavior. Listing 7.6 exemplifies the effect of the SpringPowerUpwhich allows fired
Bullets to ricochet one additional time.

Alternative. Another possibility to implement the desired feature without altering the
generic Timer class is to use mixins. Similar to FlightJS1 we use functional mixins to extend
objects in an aspect-oriented manner. We discuss the relation between aspect-oriented pro-
gramming (aop) and trigger constraints in more detail in Section 8.1. Listing 7.7 uses func-
tional mixins to extend the timer object in order to activate the power up layer appropriately.
First, we activate the layer globally (line 12). Then, the withAdvice mixin extends the timer
with before and after methods (line 13). Next, the withLayerUntilTimeout mixin extends
the methods of the timer. After the updatemethod is called, we check whether a timeout has
occurred and if the layer is currently active (lines 2 - 6). If that is the case, we deactivate the
layer. After the resetmethod ran, we activate the layer again (lines 7 - 9).

1Twitter Inc., FlightJS, http://flightjs.github.io/ (last accessed April 30, 2015)
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Figure 7.1: Architecture to handle behavior variations of power ups

1 Object.subclass(’Timer’, {
2 initialize: function(time) {
3 var that = this;
4
5 this._time = time;
6 this.untilTimeout = predicate(function() {
7 return that._time > 0;
8 });
9 },

10 update: function(dt) {
11 this._time -= dt;
12 },
13 reset: function(additionalDuration) {
14 this._time = Math.max(this._time, 0) + additionalDuration;
15 }
16 });

Listing 7.4: Timer class for measuring time intervals

1 timer.untilTimeout.activate(this.effect(tank));

Listing 7.5: Connecting the timer with the power up-specific effect

1 effect: function(tank) {
2 return new Layer().refineObject(tank, {
3 getBulletRicochets: function() {
4 return cop.proceed() + 1;
5 }
6 });
7 },

Listing 7.6: The effectmethod of the class SpringPowerUp
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1 function withLayerUntilTimeout() {
2 this.after(’update’, function() {
3 if(this.time <= 0 && layer.isGlobal()) {
4 layer.beNotGlobal();
5 }
6 });
7 this.after(’reset’, function() {
8 layer.beGlobal();
9 });

10 }
11
12 layer.beGlobal();
13 withAdvice.call(timer);
14 withLayerUntilTimeout.call(timer);

Listing 7.7: An equivalent implementation using aspects

Comparison. Using activator constraints, one can bind the activation of a layer to an arbi-
trary condition. We argue that this mechanism has a number of advantages compared to the
mixin variant. First, activator constraints make the relation between the condition and the
layer activation explicit. In contrast, the mixin variant treats this relation implicitly by adding
the appropriate condition in the extended functionality as seen in line 3 of Listing 7.7. Second,
using mixins one has to explicitly specify which methods can affect the layer. So, this variant
requires knowledge about the base object. Additionally, when the base object is changed, the
mixin has to be updated as well. On the contrary, activator constraints handle this issue auto-
matically by installing property accessors at the appropriate places. Nevertheless, functional
mixins represent a powerful composition mechanism in JavaScript.

7.3 Handle Constraints in Different Game Modes

Problem. The example game supports two operational modes: the game mode and the edi-
tor mode. Both modes vary in their specific behavior. In addition to varying behavior, several
regular constraints and trigger constraints apply only in one of the modes. The problem is
to find a mechanism to deal with the varying behavior as well as varying constraints in both
modes.

The modes exemplify context-dependent constraints. We argue that a powerful scoping
mechanism for both, behavioral variation and constraints, is desirable in an object constraint
programming (ocp) environment.

Solution. Layers provide a convenient scoping mechanism for behavioral variation. For in-
stance, the EditorLayer refines the Game’s drawmethod as shown in Listing 7.8. The rendering
of the level is adjusted to draw the level semitransparent (line 4). Additionally, the interface
of the editor mode is drawn (lines 6 - 8). The addition of scoped constraints described in Sec-
tion 5.3 allows layers to treat constraints in a similar way as variations in behavior. So, we can
specify that certain constraints are only enabled while the associated layer is active. Listing 7.9
exemplifies this for two constraints which handle editor mode-specific functionality.

Alternative. Without scoped constraints we have to enable or disable constraints using low-
level methods as layers activate or deactivate, respectively. Some context-oriented program-
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1 EditorLayer.refineClass(Game, {
2 // ...
3 draw: function() {
4 this.renderer.withTransparency(0.7, cop.proceed.bind(cop));
5
6 this.renderer.withViewport(this.viewport, (function() {
7 this.editor.draw(this.renderer);
8 }).bind(this));
9 }

10 });

Listing 7.8: The EditorLayer augments the Game’s drawmethod

1 EditorLayer.predicate(function() {
2 return input.pressed(’leftclick’);
3 }).trigger(
4 editor.modifyTileType.bind(editor)
5 );
6
7 EditorLayer.predicate(function() {
8 return editor.tileIndex.equals(map.positionToCoordinates(input.position));
9 }).always({

10 solver: new DBPlanner()
11 });

Listing 7.9: Two constraints that are only active in editor mode

ming (cop) implementations2 allow to bind callbacks to the activation and deactivation of
layers in order to support the setup and cleanup for additional behavior.We extendContextJS
to support this feature, and use callbacks to enable and disable context-dependent constraints
appropriately. Listing 7.10 shows a trigger constraint in lines 1 to 5. In line 7we bind the enable
method of the trigger constraint to the activation of the EditorLayer. Similarly, we disable the
constraint again if the layer is deactivated (line 8). As a result, we achieve a behavior similar to
scoped constraints.

1 var modifyTileTrigger = predicate(function() {
2 return input.pressed(’leftclick’);
3 }).trigger(
4 editor.modifyTileType.bind(editor)
5 );
6
7 EditorLayer.on(’activate’, modifyTileTrigger.enable.bind(modifyTileTrigger));
8 EditorLayer.on(’deactivate’, modifyTileTrigger.disable.bind(modifyTileTrigger));

Listing 7.10: Constraints scoped implicitly through layer callbacks

Comparison. We argue that scoped constraints have the following two advantages over the
event-based implementation. First, scoped constraints make the desired relation between con-
straint and layer explicit and, therefore, can reflect the requirements in a what fashion. In con-
trast, using layer callbacks and low-level modification methods solves the same issue in a how
fashion. So, the code reflects the requirement less clearly. Yet, layer callbacks can involve ar-
bitrary behavior and, therefore, represent a powerful mechanism. On the contrary, scoped

2Marius Colacioiu, Cop.js, http://www.colmarius.net/cop/ (last accessed April 30, 2015)
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constraints represent a special purpose solution which is easier to read, yet limited in its appli-
cation. Second, scoped constraints allow to treat variations in behavior and constraints equally.
In contrast, the alternative implementation has to treat constraints differently frombehavioral
variation. Thus, the concept of scoped constraints provides an appropriate solution in an ocp
environment.

Note, that scoped constraints as well as variations in behavior rely on the underlying cop
implementation and its layer activationmechanisms.Aswe support activators, constraints can
be bound to arbitrary conditions.
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This thesis describes an extension to the Babelsberg design to better integrate constraints with
object-orientedprogramming (oop) environments.Thereby,we focus on concepts to adapt or
invoke certain behavior based on given conditions. Several concepts regarding the same issue
have been proposed. Those concepts are discussed in this section.

As an additional contribution, we discuss the implementation of a non-trivial application
scenario that originates from the domain of oop. No other work using an integration of con-
straint programming (cp) and oop to implement a non-trivial problem that clearly originates
from the field of oop is known to us.

8.1 Trigger Constraints in Relation to Aspect-Oriented Programming

The concept of aspect-oriented programming (aop) [27] is a technique for improving sep-
aration of concerns in software. Aspects are modular units of crosscutting implementation,
comprised of three concepts: join points, pointcuts, and advices. Join points are points in the ex-
ecution of the program such as a method call or a field access. Pointcuts are collections of join
points. Advices are partial methods that can be attached to pointcuts. Once the execution of
a program reaches a specified join point, the given advice is executed. This mechanism allows
to easily modularize crosscutting concerns of a program such as logging.

Both concepts, aspects and trigger constraints, allow to invoke arbitrary callbacks at spe-
cific points during the execution of a program. So, the callback of a trigger is analogous to an
aspect’s advice. Yet, using aop, one has to explicitly specify the very points to intercept the ex-
ecution of the program. In contrast, trigger constraints allow to define those points implicitly
by specifying an arbitrary condition.

8.2 Activator Constraints in Relation to Other Layer Activation
Mechanisms

In this thesis, we identified the need to scope constraints, similar to behavioral variation, to
fit the requirements of object-oriented (oo) environments. The context-oriented program-
ming (cop) paradigm provides a novel approach to adapt behavior depending on the current
context. We make use of layers to scope constraints as well. To our knowledge this is the first
integration of layers and constraints. In the following we compare activator constraints with
other layer activation mechanisms.

Event-based activation. Typical layer activation mechanisms such as imperative and control
flow-based activation tend to couple activation logic and base program logic. In contrast,
JCop [3] separates the control of layer activation, and the execution of context-dependent
behavior. To do so, JCop introduces a declarative layer composition statement that consists of
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two parts: predicates define a set of events provided by the system and a composition block speci-
fies which layers should be activated or deactivated.When one of the specified events fires, the
corresponding layers are activated or deactivated, respectively. Another cop implementation,
EventCJ [24], provides two new language constructs, event declarations and layer transition
rules, in addition to layer declaration. An event declaration specifies a named event, when the
event is triggered, and to which objects the event is sent. A layer transition rule specifies the
activation and deactivation of layers in a declarative manner. If an object receives the specified
event, the rule is applied to this very object. For instance, such a rule could state that the object
switches from one set of layers to another.

Similar to activator constraints, the event-based activationmechanismsof JCopandEventCJ
allow to decouple the activation of layers and the base programby abstracting the point of acti-
vation.Todo so, JCop andEventCJ events rely on a subset ofAspectJ [26] pointcuts.However,
the pointcut has to be specified explicitly. In contrast, activator constraints allow to specify an
arbitrary condition and, thereby, abstract from concrete point of execution to activate the
layer. Additionally, while activator constraints activate a layer globally, EventCJ provides layer
activation in an instance-specific manner.

Implicit activation. In most existing implementations of method layers, a layer has to be ac-
tivated explicitly, typically after evaluating some condition. If this condition could change fre-
quently, the check and the layer activation need to be added in many places of the code. To
address this issue, PyContext [38] introduces implicit layer activation. Each PyContext layer
may define the active method. If this method evaluates to true, the layer is active. When a
layered method is called, PyContext first determines which layers are active. Then, the layer
composition for all participating method definitions is built. Another cop implementation,
ServalCJ [25], attempts to unify all existing layer activation methods by introducing two con-
cepts: contexts specify the duration of a layer activation and subscribers specify which compu-
tations are affected by the layer activation. The unified model allows to represent all existing
cop implementations. This model is based on several activation means, including the same
concept of implicit layer activation as PyContext.

Implicit layer activation allows to factor out context activation from the actual logic of the
program like activator constraints do. However, one should keep in mind that PyContext as
well as ServalCJ evaluate the activation condition on each invocation of a method that is po-
tentially affected by layer activation. This is an appropriate mechanism, if a condition changes
more often than the affectedmethod is invoked. If that is not the case, thismechanismmaypro-
duce severe overhead. In contrast, activator constraints only check conditions at the moment
they could change, i.e. during an assignment or during constraint solving. As an example, in
our application the user switches between game mode and editor mode by pressing a button.
The mode affects the behavior of the game object that is called every frame. PyContext would
check the condition on every frame, Babelsberg only when the button state changes.

8.3 Reactive Programming

Trigger and activator constraints allow to write an application in a reactive manner. Reac-
tive programming promises clean, declarative code and, therefore, has been of interest for re-
searchers. Two specific approaches in reactive programming are discussed in the following.
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Functional reactive animation. Fran [10] is a collection of data types and functions dedicated
to create richly interactive,multimedia applications inHaskell. To achieve this goal, Fran relies
on three basic concepts: behaviors, events, and declarative reactivity. First, behaviors are values
that vary over continuous time. One can specify such behaviors in relation to the built-in time
variable or to other behaviors. Second, events are named entities described by arbitrary com-
plex predicates. Third, Fran allows to react to events in a declarative manner. These reactions
are composed using events and temporal logic.

With events Fran offers a similar concept as trigger constraints, both allow the specifica-
tion of arbitrary complex conditions. However, the underlying mechanisms of both concepts
are quite different. To detect events over continuous time Fran employs interval analysis. In
contrast, trigger constraints react to any discrete, imperative state changes. By introducing re-
activity to functional programming, Fran laid the foundation of the concept of functional
reactive programming.We argue that triggers represent a powerful tool to specify reactivity in
oo systems.

Constraint reactive programming. The Babelsberg/CRP design attempts to integrate object
constraint programming (ocp) with reactivity. To do so, Babelsberg/CRP draws heavily from
the concepts of Fran. To be specific, Babelsberg/CRP is based on continuously varying vari-
ables and boolean-valued event variables that are similar to Fran’s behaviors and events, respec-
tively. Babelsberg/CRP introduces two types of temporal constraints: a while constraint con-
tinuously enforces a set of constraints as long as the givenpredicate holds and awhen constraint
instantaneously enforces a set of constraints when an event occurs. Both types of constraints
allow for an until clausewith an event expression that cancels the constraint if the event occurs.

The while temporal constraint act in a similar way as activator constraints. However, the
while constraint is only able to scope other constraints. In contrast, activator constraints can
activate layers, and these layers can adapt constraints and behavior. The when temporal con-
straint and theuntil clause are both similar to trigger constraints. Yet, Babelsberg/CRPandour
reactive constraints greatly differ in their approaches. Similar to Fran, Babelsberg/CRP reacts
to changes in a continuous environment. On the contrary, reactive constraints as introduced
in this work integrate into discrete, oo environments.
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We presented a non-trivial application scenario to verify Babelsberg’s capabilities and applica-
bility to classical object-oriented (oo) problems. We have shown some fields of applicability
of Babelsberg, but also identified shortcomings in the current Babelsberg design. To address
these issues, we extended Babelsberg with the concept of reactive and scoped constraints. Nev-
ertheless, we identified some further areas of improvement. For example, we did not improve
the usability of the existing functionality of Babelsberg.

9.1 Extending Babelsberg Functionality

Integrating a general purpose solver. One major contribution of constraint programming
(cp) is that we are able to solve hard problems like layouting using an appropriate solver, e.g.
Cassowary. Babelsberg already supports the integration of additional solvers in order to cover
awider range of domains.However, the available solvers are typically limited to specific, primi-
tive domains, as described byWallace [39]. As a consequence, most constraints involving high-
level objects cannot be solved using Babelsberg. To increase the applicability of object con-
straint programming (ocp), the development and integration of solvers that address complex
structures like object graphs seems desirable. One way to do so is to involve user-defined func-
tions in the process of constraint solving. For example, the DeltaBlue solver requires the user
to supply propagation functions in order to solve given constraints. This requirement puts an
additional load on the programmer, but allows the solver to support arbitrary domains. Ba-
belsberg already supports the DeltaBlue solver that is also used in our oo sample application,
as described in Section 4.4. Another solver that could increase the applicability of Babelsberg
is the van Overveld relaxation solver [32]. This solver requires the programmer to specify an
error function to detect whether a constraint is satisfied and a displacement function that is
called to correct that error. So, the vanOverveld relaxation solver supports anydomainbecause
arbitrary functions can be supplied.

Instance-specific layer activation. This thesis introduced constrained layerswhich are active as
long as a particular expression is fulfilled. While constrained layers are useful for conditional
variations of behavior, adapting the behavior of specific instances on a condition currently
involves creating one layer per instance. The concept of instance-specific layer activation [28]
seems useful in those cases.However, this type of layer activation is currently not supported by
constrained layers.We imagine a layer to be activated for an instance if a given condition ismet
for this specific object. Note, that to implement such a behavior, a notion of parameterizable
constraints is needed. So, the constraint would be defined once, but checked for each instance
of a class.
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9.2 Improving Babelsberg Usability

This thesis proposed a possibleway to better integrate cp featureswithoobehavior.However,
we investigated further fields of possible improvements. These improvementsmainly focus on
making Babelsberg easier accessible for oo programmers.

Automatic edit constraints. Some solvers, like DeltaBlue and Cassowary, have a high cost
for the initial construction of constraints. As described in Section 2.3, both solvers need expo-
nential time with respect to the number of constraints to prepare the constraint system for
solving. Actually solving those systems only needs linear time with respect to the number of
constraints. However, assignments to constraint variables are modeled using temporary con-
straints in Babelsberg. This can lead to a high runtime if such constraint variables are changed
frequently. For such cases Babelsberg offers edit constraints to deal with this issue. These per-
manent constraints handle assignments without the need to restructure the whole constraint
system. As a consequence, the usage of edit constraints can lead to better performance. Never-
theless, two issues need to be taken into consideration when using edit constraints. First, edit
constraints require the user to know which variables act as constraint variables and to directly
manipulate these variables. This violates the oo principles of encapsulation and information
hiding. Second, edit constraints integrate poorly with external libraries. One needs to extend
or adjust the libraries in order to profit from edit constraints. Both issues may be solved by let-
tingBabelsberg or the respective solver detect constraint variables that are frequentlymodified.
For those variables Babelsberg automatically constructs edit constraints without affecting the
semantics. As a consequence, the overall performance could be improved transparently.

Automatic solver selection and region management. cp requires much knowledge from a
programmer in order to make efficient use of its abstraction mechanisms. For example, a pro-
grammer has to know all solver specifics to choose the right tool for the task at hand. As a
consequence, ooprogrammers need to learn about these specifics before they can employ con-
straints efficiently. Additionally, even if the solver capabilities are familiar to the programmer,
managing solver instances manually puts an additional load on the programmer. As a system
becomes more complex, choosing an optimal distribution of constraints on different solver
instances is difficult. A mechanism to help programmers to manage solver instances seems
highly desirable. Currently, Babelsberg/JS supports a list of default solvers. If no solver is ex-
plicitly specified for a constraint, Babelsberg/JS tries out which default solver can solve the
given constraint, and assigns the constraint to the first matching solver. However, considering
a complex system with dynamic constraints a more elaborated mechanism would be useful.
This mechanism should not only automatically select an appropriate solver during constraint
construction, but also reassign constraints to other solvers or regions when beneficial. To do
so, onemight want to separate code interpretation and constraint construction using an inter-
mediate representation of the constraint expression. So, one could transform the intermediate
representation more easily into a solver-specific constraint expression when the desired type
of solver is changed. Once Babelsberg is able to manage solvers and regions automatically, the
programmer can finally focus on the constraint itself rather than how the constraint is solved
and maintained. Ultimately, automatic solver selection and region management would lower
the initial barrier for oo programmer.
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Babelsberg is an instance of the object constraint programming (ocp) design, and aims to be a
practical constraint programming (cp) tool for object-oriented (oo) programmers. In this the-
sis, we evaluated how well Babelsberg was able to achieve this goal. To that end, we reviewed
several examples written using an implementation of Babelsberg. It turned out that all cur-
rent examples emerge from the area of cp, and therefore cannot convincingly demonstrate
how useful Babelsberg is for pure oo applications. Hence, we cannot make any conclusions
simplybasedon those examples. Instead,we formulated an example applicationwithoo roots,
an adaption of the game Wii Play/Tanks. This example enabled us to study the usage of con-
straints in an actual oo program. We identified that the usage of constraints is much more
limited compared to the previous, trivially-constrainable examples. Nevertheless, the readabil-
ity of theoo code can benefit from constraint systems: for example, Babelsberg in conjunction
with the local propagation solver DeltaBlue allowed us to describe data flows at a high level of
abstraction.

However, we also discovered three major shortcomings in the current design of Babelsberg
with regards to the usage in our sample application. First, some constraints involving high-
level objects cannot be solved by any available solver. Second, constraints lack of integration
with the surrounding application behavior. Third, as constraints are enabled and disabled fre-
quently in our example, a sophisticated way to deal with these dynamic constraints is missing.

To overcome these shortcomings, we adjusted the Babelsberg design in various ways. To
address the first shortcoming, we introduce continuous assertions that allow to deal with the
absence of an appropriate solver given a certain constraint. The constraint cannot be solved au-
tomatically, but invalidating the constraint expression of a continuous assertion automatically
restores the previous state. Regarding the second shortcomingwe introduce trigger constraints
that invoke a callback as soon as a given constraint expression evaluates to true. Similarly, an
activator constraint allows to dynamically adapt context-oriented programming (cop) layers
based on the result of a constraint expression. To address the third shortcoming, we developed
a mechanism to associate a constraint with a cop layer. As a result, the constraint is automat-
ically enabled while the associated layer is active. The combination with activator constraints
allows to automatically enable constraints based on arbitrary boolean expressions.

We implemented the proposed concepts in Babelsberg/JS and illustrate their usage in our
example application. In addition, we discussed possible alternatives to the usage of constraints
in our application. In particular, we investigated data flows, functional mixins, and a topic-
based message system. We argue that the proposed concepts represent a useful addition to
Babelsberg and to the object constraint programming paradigm in general.

61





Bibliography

[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael Per-
scheid. “A comparison of context-oriented programming languages.” In: Proceedings
of International Workshop on Context-Oriented Programming (COP). 6. ACM. 2009,
p. 6.

[2] MalteAppeltauer,RobertHirschfeld,MichaelHaupt, andHidehikoMasuhara. “Con-
textJ: Context-oriented programming with Java.” In: Journal of the Japan Society for
Software Science and Technology (JSSST) on Computer Software 28.1 (2011), pp. 399–419.

[3] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. “Event-specific software composition in context-oriented pro-
gramming.” In: Proceedings of the 9th International Conference on Software Composi-
tion (SC). Springer. 2010, pp. 50–65.

[4] Greg J. Badros, Alan Borning, and Peter J. Stuckey. “The Cassowary linear arithmetic
constraint solving algorithm.” In:ACMTransactions on Computer-Human Interaction
(TOCHI) 8.4 (2001), pp. 267–306.

[5] AlanBorning. “Theprogramming language aspects ofThingLab, a constraint-oriented
simulation laboratory.” In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 3.4 (1981), pp. 353–387.

[6] AlanBorning,RobertDuisberg, BjornN. Freeman-Benson,AxelKramer, andMichael
Woolf. “Constraint hierarchies.” In: Proceedings of the ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA).
ACM, 1987, pp. 48–60.

[7] Pascal Costanza and Robert Hirschfeld. “Language constructs for context-oriented
programming: an overview of ContextL.” In: Proceedings of the symposium on Dy-
namic languages (DLS). ACM. 2005, pp. 1–10.

[8] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver.” In: Proceed-
ings of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer, 2008, pp. 337–340.

[9] Pierre Deransart, AbdelAli Ed-Dbali, and Laurent Cervoni. Prolog - the standard: ref-
erence manual. Springer, 1996. isbn: 978-3540593041.

[10] Conal Elliott and Paul Hudak. “Functional reactive animation.” In: Proceedings of
the ACM SIGPLAN International Conference on Functional Programming (ICFP).
Vol. 32. 8. ACM. 1997, pp. 263–273.

[11] Tim Felgentreff, Alan Borning, and Robert Hirschfeld. “Babelsberg: Specifying and
solving constraints on object behavior.” In: Journal of Object Technology (JOT) 13.4
(2014), 1:1–38.

63



Bibliography

[12] TimFelgentreff, Alan Borning,RobertHirschfeld, Jens Lincke, YoshikiOhshima, Bert
Freudenberg, andRobertKrahn. “Babelsberg/JS -Abrowser-based implementationof
an object constraint language.” In: Proceedings of the European Conference on Object-
oriented Programming (ECOOP). Springer, 2014, pp. 411–436.

[13] Tim Felgentreff, ToddMillstein, and Alan Borning.Developing a formal semantics for
Babelsberg: A step-by-step approach. Tech. rep. Technical Report TR-2014-002a, View-
points Research Institute, 2014, pp. 1–60.

[14] BjornN. Freeman-Benson. “Kaleidoscope:Mixing objects, constraints, and imperative
programming.” In:Proceedings of the Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications / European Conference on Object-oriented Program-
ming (OOPSLA/ECOOP). ACM. 1990, pp. 77–88.

[15] Bjorn N. Freeman-Benson and Alan Borning. “Integrating constraints with an object-
oriented language.” In: Proceedings of the European Conference on Object-oriented Pro-
gramming (ECOOP). Springer. 1992, pp. 268–286.

[16] BjornN. Freeman-Benson and JohnMaloney. “TheDeltaBlue algorithm: an incremen-
tal constraint hierarchy solver.” In:Proceedings of the International Phoenix Conference
on Computers and Communications. 1989, pp. 538–542.

[17] Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. “An incremental con-
straint solver.” In: Communications of the ACM (CACM) 33.1 (1990), pp. 54–63.

[18] AdeleGoldberg andDavidRobson. Smalltalk-80: the language and its implementation.
Addison-Wesley, 1983. isbn: 0-201-11371-6.

[19] MariaGraber,TimFelgentreff,RobertHirschfeld, andAlanBorning. “Solving interac-
tive logic puzzles with object-constraints.” In: Proceedings of the Workshop on Reactive
and Event-based Languages and Systems (REBLS). 2014.

[20] Martin Grabmüller and Petra Hofstedt. “Turtle: A constraint imperative program-
ming language.” In:Research and Development in Intelligent Systems XX, Proceedings
of AI2003. Springer, 2004, pp. 185–198.

[21] RobertHirschfeld, Pascal Costanza, andOscarNierstrasz. “Context-oriented program-
ming.” In: Journal of Object Technology (JOT) 7.3 (2008), pp. 125–151.

[22] Daniel Ingalls,KrzysztofPalacz, StephenUhler,AnteroTaivalsaari, andTommiMikko-
nen. “The lively kernel a self-supporting system on a web page.” In: Self-Sustaining
Systems (S3). Springer, 2008, pp. 31–50.

[23] Joxan Jaffar and Jean-Louis Lassez. “Constraint logic programming.” In: Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL). ACM, Jan.
1987, pp. 111–119.

[24] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. “EventCJ: a context-
oriented programming language with declarative event-based context transition.” In:
Proceedings of the tenth international conference on Aspect-oriented software develop-
ment (AOSD). ACM. 2011, pp. 253–264.

[25] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. “Generalized layer acti-
vationmechanism through contexts and subscribers.” In: Proceedings of the 14th Inter-
national Conference on Modularity (MODULARITY). ACM. 2015, pp. 14–28.

64



Bibliography

[26] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William
G Griswold. “An overview of AspectJ.” In: Proceedings of the European Conference on
Object-oriented Programming (ECOOP). Springer, 2001, pp. 327–354.

[27] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-MarcLoingtier, and John Irwin. “Aspect-oriented programming.” In:Proceedings
of the European Conference on Object-oriented Programming (ECOOP). Springer, 1997,
pp. 220–242.

[28] Jens Lincke,Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. “An open im-
plementation for context-oriented layer composition in ContextJS.” In: Journal of Sci-
ence of Computer Programming 76.12 (2011), pp. 1194–1209.

[29] Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The
Lively PartsBin–A Cloud-Based Repository for Collaborative Development of Active
WebContent.” In: Proceedings of the 45th Hawaii International Conference on Systems
Science (HICSS). IEEE. 2012, pp. 693–701.

[30] Gus Lopez, Bjorn N. Freeman-Benson, and Alan Borning. “Implementing constraint
imperative programming languages: The Kaleidoscope’93 virtual machine.” In: Pro-
ceedings of the ACM SIGPLANConference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM. 1994, pp. 259–271.

[31] GusLopez, BjornN. Freeman-Benson, andAlanBorning. “Kaleidoscope:A constraint
imperative programming language.” In:Constraint Programming. Ed. by BrianMayoh,
Enn Tyugu, and Jaan Penjam. Vol. 131. NATO ASI Series. Series F: Computer and Sys-
tem Sciences. Springer, 1994, pp. 313–329.

[32] C.W.A.M. van Overveld. “30 Years after Sketchpad: Relaxation of Geometric Con-
straints Revisited.” In: Centrum voor Wiskunde en Informatica (CWI) Quarterly 6.4
(1993), pp. 363–383.

[33] François Pachet and Pierre Roy. “Integrating constraint satisfaction techniques with
complex object structures.” In: Proceedings of the 15th Annual Conference of the BCS
Specialist Group on Expert Systems. 1995, p. 11.

[34] François Pachet and Pierre Roy. “Mixing constraints and objects: A case study in auto-
matic harmonization.” In: Proceedings of TOOLS Europe. Vol. 95. Prentice Hall. 1995,
pp. 119–126.

[35] Pierre Roy and François Pachet. “Reifying constraint satisfaction in Smalltalk.” In:
Journal of Object-Oriented Programming (JOOP) 10.4 (1997), pp. 43–51.

[36] Erica Sadun. IOSAuto LayoutDemystified.Addison-Wesley, 2013. isbn: 978-0321967190.
[37] Ivan E. Sutherland. “Sketchpad: A man-machine graphical communication system.”

In: Proceedings of the Spring Joint Computer Conference. AFIPS ’63 (Spring). 1963,
pp. 329–346.

[38] MartinVonLöwis,MarcusDenker, andOscarNierstrasz. “Context-oriented program-
ming: beyond layers.” In:Proceedings of the International Conference on Dynamic Lan-
guages (ICDL). Vol. 286. ACM. 2007, pp. 143–156.

[39] MarkWallace. “Practical applications of constraint programming.” In:Constraints 1.1-2
(1996), pp. 139–168.

65





Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegendeArbeit selbständig verfasst sowie keine anderen
Quellen und Hilfsmittel als die angegebenen benutzt habe.

Potsdam, den 30. April 2015
Stefan Lehmann

67


	Introduction
	Babelsberg, a Practical Constraint Programming Tool for Object-Oriented Developers?
	Contributions and Structure of this Thesis

	Background
	An Incomplete History of Constraint Programming
	Recent Efforts in Constraint Programming
	On Available Constraint Solvers

	Motivation
	Sample Applications
	Problem Statement

	A Non-Trivial Application Scenario
	Game Description
	Design
	Design Alternative
	Involving Constraints
	Open Issues in Babelsberg Design

	Refining Babelsberg Concepts for Object-Oriented Environments
	Continuous Assertions
	Reactive Constraints
	Trigger Constraints: Invoke Behavior Depending on Constraint Expressions
	Activator Constraints: Adapt Behavior Depending on Constraint Expressions

	Scoped Constraints
	A Unified Notation for Constraint Specification
	Open Issues

	Implementation
	Constraint Construction and Maintenance in Babelsberg
	Utilizing the Architecture of Cooperating Solvers to Implement Additional Concepts
	Using ContextJS Layer to Scope Constraints

	Evaluation
	Collision Detection using Trigger Constraints
	Power Ups using Layers and Activator Constraints
	Handle Constraints in Different Game Modes

	Related Approaches
	Trigger Constraints in Relation to Aspect-Oriented Programming
	Activator Constraints in Relation to Other Layer Activation Mechanisms
	Reactive Programming

	Future Work
	Extending Babelsberg Functionality
	Improving Babelsberg Usability

	Conclusions

