
MµSE: Supporting Exploration of Sofware-Hardware Interactions
Through Examples

Paul Methfessel Tom Beckmann Patrick Rein
paul.methfessel@student.hpi.uni- tom.beckmann@hpi.uni-potsdam.de patrick.rein@hpi.uni-potsdam.de

potsdam.de Hasso Plattner Institute Hasso Plattner Institute
Hasso Plattner Institute Potsdam, Germany Potsdam, Germany
Potsdam, Germany

Stefan Ramson Robert Hirschfeld
stefan.ramson@hpi.uni-potsdam.de robert.hirschfeld@uni-potsdam.de

Hasso Plattner Institute Hasso Plattner Institute
Potsdam, Germany Potsdam, Germany

Figure 1: MµSE (Micro-Scenarios-for-Embedded) is an example-based live programming editor for prototyping embedded
systems. It provides (1) components for testing and exploring hardware and software concerns in isolation from other imple-
mentation code, (2) insight into the runtime and external inputs with probes streamed live from the running hardware, and (3)
examples for confguring live execution with (4) replacements of felds and methods.

ABSTRACT
Programmers regularly explore the execution of code examples to
verify assumptions by adding print statements or commenting in
and out setup code in their implementation to isolate code paths
of interest. In our formative study on developing embedded pro-
grams, where proximity to hardware dictates low abstraction levels,
we observed that wrong assumptions occur frequently. However,
traditional editors for embedded programs lack support for such

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642186

https://orcid.org/0000-0003-0387-171X
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0002-0913-1264
https://orcid.org/0000-0002-4249-6003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642186
mailto:robert.hirschfeld@uni-potsdam.de
mailto:stefan.ramson@hpi.uni-potsdam.de
https://potsdam.de
mailto:patrick.rein@hpi.uni-potsdam.de
mailto:paul.methfessel@student.hpi.uni-tom.beckmann@hpi.uni-potsdam.de
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642186&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Methfessel, Beckmann, Rein, Ramson, Hirschfeld

explorations. Consequently, programmers have to re-create and
clean up setup and print statements in their code for each example.

MµSE supports isolated explorations of code examples by pro-
moting examples to frst-class entities that allow for the mocking of
side efects from code and hardware, which could interfere with ex-
amples, and automatically showing values of expressions, replacing
print statements for debugging. Our exploratory study found that
MµSE supports participants in developing an understanding of soft-
ware and hardware components and identifying false assumptions
from observation of incorrect behavior.

CCS CONCEPTS
• Software and its engineering → Application specifc devel-
opment environments; Integrated and visual development environ-
ments; • Computer systems organization → Embedded software.

KEYWORDS
live programming, embedded systems, examples

ACM Reference Format:
Paul Methfessel, Tom Beckmann, Patrick Rein, Stefan Ramson, and Robert
Hirschfeld. 2024. MµSE: Supporting Exploration of Software-Hardware Inter-
actions Through Examples. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3613904.3642186

1 INTRODUCTION
Embedded systems consist of a computer as a part of an electrical
or mechanical system called a micro-controller unit (MCU). Writing
code for these devices often requires gaining knowledge on and
prototyping of these external systems. If, for example, a micro-
controller should read values from a light sensor, the developer
needs to know how to connect it correctly, calibrate it, and interpret
the resulting values. Execution typically also depends on the state
of the physical environment around the device, such as the position
of the device or brightness in the environment. Consequently, when
errors occur, their cause might be because of a previously untested
environment, faulty code, unreliable electric components, or wrong
connections [3]. On top of the abstraction levels introduced through
code, debugging an embedded program thus requires developers to
investigate multiple other sources of potential faults.

To better understand how developers currently deal with these
challenges when prototyping embedded code, we performed a for-
mative study with developers of embedded programs. We found
that participants of our study would begin by thinking of concrete
examples [6] with a fxed environment and inputs. These concrete
examples serve to identify wrong assumptions or gaps in the devel-
opers’ mental model with regard to the actual execution. Developers
of general-purpose software follow the same process [6, 21]. Partici-
pants described working in a bottom-up fashion, frst creating code
for the individual hardware devices, and then moving to higher
abstraction layers, until the whole application is composed. Par-
ticipants try and test their code for each hardware device against
a concrete example to verify its behavior. These example execu-
tion paths are commonly created through temporary setup code
that provides specifc inputs and dependencies, while other appli-
cation code that interferes with the execution is commented out.

Later, when participants notice a gap in their understanding or
encounter an error they suspect might be related to a hardware
device, they often re-create those examples, either from scratch
or recovering them from commented-out code, which introduces
signifcant friction to switching between diferent examples and
the full application. To see the values of the runtime, participants
write print statements that need to be removed again later on. Sim-
ilarly, to understand how program outputs afect hardware, such as
the value for the speed of motors, programmers repeatedly output
values as part of their temporary test setup, wait for the program to
be compiled and fashed on the MCU, and observe the hardware’s
behavior. We conclude that participants use ad-hoc examples as a
means to identify gaps between their mental model and the actual
execution of the program [15]. In practice, however, participants
reported that their workfow is not well supported by traditional
editors for embedded programming. The friction of managing and
re-creating ad-hoc examples in code discourages a structured and
well-isolated exploration of errors across hardware and software
layers.

To support developers in verifying their mental model when
working on embedded programs, we created an example-based live
programming [23] system called MµSE. With our tool, developers
can directly create frst-class examples in the editor to execute a
component in isolation and mock dependencies, independent of
implementation code. Switching between examples or the imple-
mentation is as simple as a single click. Runtime values of relevant
expressions are shown inside the editor as probes, annotations that
report the values of expressions, to help verify assumptions of state
observable in the program as a replacement for manual, temporary
print statements. While working in MµSE, the application code is
continuously executed on the developer’s host machine that com-
municates with a real MCU whenever code reads or writes from
hardware devices through a small remote-procedure-call kernel
on the MCU. When developers save their code, execution restarts
immediately to support exploration of the efects of program out-
puts on the hardware, removing the wait time for compiling and
uploading code when developers want to preview changes.

We conducted an exploratory user study with 13 developers,
as well as two experts in the feld, to understand how developers
validate their mental model using MµSE and how it impacts the
developers’ workfow. We found that MµSE is especially helpful
when developers are trying to understand an unknown behavior
or value of hardware devices. In these circumstances, MµSE pro-
vides fast discovery of both errors and wrong assumptions about
functionality.

Contributions. This work contributes:

• a formative study fnding how developers prototype embed-
ded systems code,

• the design and implementation of MµSE, an example-based
live programming system that solves the identifed problems
of managing and testing examples for embedded program-
ming, and

• an evaluation of MµSE with a focus on developers’ interac-
tions.

https://doi.org/10.1145/3613904.3642186

MµSE: Supporting Exploration of Sofware-Hardware Interactions Through Examples CHI ’24, May 11–16, 2024, Honolulu, HI, USA

MµSE is publicly available on Github1 under the MIT license to
enable replication, further research, and use of the tool.

2 BACKGROUND
Developer-tooling for embedded programming faces limitations
that are unique to its domain. In this section, we will describe
diferences between embedded programming and general-purpose
programming, in particular diferences in execution models and
state management.

2.1 Obtaining Input from Hardware Devices
Hardware input for embedded programs is typically obtained from
a set of sensors connected to the microchip. Sensors are read either
in a push or pull manner: in a push manner, interrupts trigger
registered entry points. In a pull manner, the program repeatedly
reads the current sensor values in a loop and acts on it (this is also
called Super-Loop-Architecture2). Both are illustrated in Figure 2.

Interrupts trigger events based on certain conditions, for exam-
ple when an electrical signal exceeds a constant threshold. Inter-
rupts tend to be low-level and require a good understanding of the
frameworks’ API, memory management of the MCU, and external
hardware behavior. Since interrupts can be called at any time in
the program execution, developers need to be well aware of the
fow of the program to reduce the risk of race conditions or other
problems [13, 20].

When using the pull approach, sensor values are pulled within
the context of the main loop, which may contain arbitrary code
and can thus react to arbitrary combinations of sensor values. As
values can be continuously accessed from sensors and thus printed,
the hardware may be more discoverable for programmers. It also
requires less knowledge of the framework’s API, since developers
do not need to learn the specifc triggers for interrupts, but can
write them themselves with generalized logic. The disadvantage
of this approach compared to interrupts is that it is slower and
therefore not feasible for some high-speed real-time code.

In many use cases, programs need to integrate obtained sensor
values over time by reading a sensor on each iteration of the main
loop. For example, since sensor values are typically raw or only
processed lightly, they contain noise that needs to be fltered over
time. Or, for calculating an exponential moving average over light
sensor values, the program needs to continuously access the sensor
and accumulate its values. Accordingly, values need to be stored
outside the local function scope when accumulating, as can be seen
in Figure 3. Thus, the manner of pull or push in which the hardware
communicates with the program infuences both the control fow
of the code and state management. While our proposed design is
applicable to both pull and push communication, push communi-
cation is not compatible with the hot-reloading mechanism of our
reference implementation, as described in section 7.

1https://github.com/Paulpanther/muse-embedded-live-programming
2https://en.wikibooks.org/wiki/Embedded_Systems/Super_Loop_Architecture

void loop() {
if (digitalRead(pin) == HIGH) {

Serial.println(" Button pressed ");
}

}

(a) Pull/loop implementation: in the main loop of the program, the
electrical signal at the pin connected to the button is checked. If it is
HIGH the button is pressed and Buton pressed will be printed until
it is released.
void setup() {

attachInterrupt(
pin , onButtonPress , HIGH);

}

void onButtonPress () {
Serial.println(" Button pressed ");

}

(b) Push/interrupt-based implementation: the interrupt is registered
in setup to call onButonPress when the given pin is HIGH.

Figure 2: Comparison of two programs with (nearly) iden-
tical behavior using a (a) loop/pull and (b) interrupt/push
implementation

2.2 Observing and Debugging State in
Embedded Programs

As described before, state is often accumulated or integrated over
multiple iterations. As a consequence, the input cannot be as eas-
ily mocked for testing, as not only do the initial parameters of a
function need to be set, but events triggered by the hardware need
to be replicated with correct timing when mocked. Unfortunately,
traditional tools ofer little support for this.

Similarly, observing a single function execution without the
context of previous iterations is less useful to the developer as
the concerns of relevance are not apparent from a snapshot of the
program state, but emerge over time. Debuggers can only provide
insight into a stopped single frame and not an evolving context [18].
They also might cause problems when external triggers are ignored
during a break-point or hardware keeps executing with the now
frozen state of pins, for example, motors that keep driving while
the program is suspended. Writing unit tests also is harder than
for conventional software, since replacing external triggers in code
with correct timing is not trivial. Instead, adding print statements
is commonly used by developers for debugging. Print logs allow
viewing evolving values, with some tools like the Arduino IDE even
formatting logs in a time-value graph.

2.3 Reloading Code on MCUs
Executing new code on an MCU is typically done by compiling
a binary on a host computer and uploading it onto the MCU. De-
pending on the size of the binary, combined compile and upload
times are typically in the range of a few seconds (in our experience
from seven to twenty seconds). In particular, to support building
an understanding of the efect of values on hardware outputs, our
tool aims to allow quick experimentation with diferent values and
thus requires frequent changes to code. Consequently, uploading

https://github.com/Paulpanther/muse-embedded-live-programming
https://en.wikibooks.org/wiki/Embedded_Systems/Super_Loop_Architecture

int N = 100;
float avg = 0;

void loop() {
avg += avg * (N - 1) / N + (float) analogRead(light) /

N;
}

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Methfessel, Beckmann, Rein, Ramson, Hirschfeld

Figure 3: The loop function calculates an exponential moving
average. The avg feld has to be stored outside the loop. To
validate the behavior, loop has to be called over multiple
iterations.

code to the chip from scratch for each change incurs a major break
in attention [29].

To bridge this gap, remote-procedure-calls can be used to run
the newly written code not on the MCU, but on the developer ma-
chine [24]. Here only relevant platform calls like analogRead and
digitalWrite are sent and evaluated on the micro-controller, to em-
ulate the behavior a full execution on the MCU might have. This
has the advantage of being a general-purpose solution available
for many brands of boards and frmware and also allows wireless
communication over Bluetooth or WiFi. However, it does introduce
latency to each platform call (in our implementation a typical pro-
gram is around seven times slower). It can also hide errors when
code might not be executable on MCUs because of memory con-
straints.

3 FORMATIVE STUDY
To understand the developers’ workfow when solving prototyping
tasks with embedded software, we conducted interviews with eight
participants (CS students, all male, 1 bachelor’s, 6 master’s, and 1
PhD student) who had previous experience with building simple
embedded systems using the Arduino platform. Through a semi-
structured interview with the authors, the participants described
aspects of their procedure and thought process when approaching
embedded programming tasks.

The interviews took around 20 minutes each. Quotes from par-
ticipants are labeled P1 through P8 and are translated from German.
As part of the interview, we prompted the participants to describe
how they would write code in a scenario where a robotic car outft-
ted with a color sensor should fnd and follow a line. The task was
specifcally designed to require an exploratory [27] approach from
the participants, where questions about how hardware actually
behaved remained open. The authors followed up with additional
questions to clarify points and to better understand the participants’
thought processes.

Throughout the interviews, a pattern emerged, where partici-
pants highlighted the importance of exploring and verifying the
behavior of the hardware. Participants generally appeared cautious
to trust that once working code would remain working, stating that
hardware was notoriously prone to break in unexpected ways. Con-
sequently, the workfow participants described begins bottom-up,
close to the hardware, but keeps revisiting bottom layers, when
mismatches between the participants’ mental model and execution
surfaced through incorrect behavior of the system at later stages.

As concerns and errors are often interconnected, participants de-
scribed isolating an efect or cause as important but challenging.
Participants did not specifcally mention documentation as a strat-
egy to further their understanding. We assume that it would play
an important role during the assembly of the robotic car but may
not be as helpful when experimenting with the embedded pro-
gram, as documentation commonly lacks examples that illustrate
the use in code suitable to the concrete scenario that is required.
In the following, we detail the insights gained on the participants’
workfow.

3.1 Developers Decompose Code in
Components

Throughout all interviews, participants described starting with
individual components of the physical hardware, in the case of our
scenario the color sensor and motors of the car. For example, P2
answered the question of what the frst executable program is with:
"Turning the motor on and driving forwards and backward". The same
participant then explained that his next steps are to "encapsulate
the interaction with hardware into functions". When all hardware
devices are wrapped into components, participants stated to then
write application code, also in separate components, that makes
use of the components for the hardware devices.

The distinction in components was most often done via classes,
some via fles, and others only with separate functions, but shared
global variables. However, some participants admitted that while
they preferred distinction into components, in a real situation code
might not be structured that much because they have had bad
experiences with isolation of components with the Arduino IDE in
the past.

3.2 Developers Seek To Isolate Example
Execution

Participants suggested a distinction between implementation code
that is written for the fnal task and temporary code that serves
to construct examples. These examples serve to build an initial
understanding of a component or investigate errors they suspect
to be in a component; so, more generally examples serve to align
the developer’s mental model with the execution. In the quote
above, P2 described driving the motor forwards and backward as
an example to gain an understanding of the motor’s behavior and
value ranges for the speed it accepts. While this example executes
the core functionality of the Motor component, which will later be
used in the application, the code written for this specifc example
is a temporary artifact that participants clean up before moving on,
either by deleting it or commenting it out.

Interestingly, when prompted about handling errors, participants
described recreating examples, often in the same or a similar manner
as previous examples they used to gain an initial understanding.
A particular challenge of revisiting an example arises, as by now,
the implementation code may have grown to intertwine with the
originally small component, and thus presents a barrier to testing.
As having many components may afect the concrete execution
of the MCU, participants described eforts to isolate examples, for
instance by commenting out other components and code, or placing
new example code at the top of the main entry point. Once the

MµSE: Supporting Exploration of Sofware-Hardware Interactions Through Examples CHI ’24, May 11–16, 2024, Honolulu, HI, USA

error has been found and fxed or a diferent hypothesis needs to be
tested, all the temporary changes need to be reverted once again.

3.3 Developers Observe Inputs and Outputs
Diferently

As described, examples are designed to align a developer’s mental
model with the execution. Once participants manage to reach the
execution of the desired aspect, they need a means to inspect the
response and draw conclusions for adapting their mental model
according to the observed behavior. Depending on where the ex-
ecution manifests visibly, they use diferent strategies to inspect
it.

When possible, participants verify the correctness of their code
by observing the running hardware. In this case, participants try
giving the hardware device API’s values or parameters that they
suspect may cause interesting behavior and observe the efect on
the hardware device. For example, when driving the motors, partic-
ipants may provide large and small values for the speed parameter,
as well as negative values, to see how the motors react. An impor-
tant hurdle for this workfow is the time it takes to compile and
update a new binary, as described in subsection 2.3, which may
mean that the most time spent during the exploration of a hardware
device is on waiting for the next execution. This breaks temporal im-
mediacy and might mean that developers become distracted easily
from their task [29].

If input into the program is concerned, participants stated that
they use print statements to observe runtime values via the serial
connection on their host computer’s log output. For example, when
starting to work on reading the color sensor, participants stated that
they use print statements to understand the values of the sensor
and its behavior in the current environmental conditions. Further,
participants modify the environment by placing the robot, and thus
the sensor, in diferent places, and observe the resulting values,
to better understand its response. Any print statements that were
introduced are also conceptually part of the example’s test setup
and will thus have to be cleaned up once participants return to
work on the implementation code.

4 DESIGN
In section 3 we described how developers construct examples to
validate their mental model. In their current workfow, developers
use ad-hoc approaches to reach what we describe as components,
isolated examples, and means of verifcation. Components can be
achieved through the built-in abstraction mechanisms of the lan-
guage but are sometimes perceived as overhead by participants
of our formative study. Examples can be achieved through com-
menting out source code or reconstructing isolated execution paths,
which incurs an overhead every time participants move between
the execution of implementation and example code. Verifcation
is performed through print statements or observing the hardware,
which is inhibited by the cost to re-create print statements and long
upload times, respectively. Our proposed design, MµSE, supports,
rather than replaces, the existing workfow of developers in these
regards.

Figure 4: The setup of our developer in the example: the
robotic car sits on the table, in front of the black line. It is
connected via USB. The red button that needs to be pressed
as part of the task is visible just atop the car. The light sensor
is fxed to the car’s front using tape.

MµSE’s design consists of four parts. Components structure code
in modules that programmers ideally design to serve a single pur-
pose, such as controlling a motor, akin to well-designed classes in
object-oriented programming. Examples are attached to a compo-
nent and form new entrypoints for execution, in place of the global
setup or loop functions. Examples thus allow starting execution di-
rectly at a component. Examples may contain replacements that
override felds or methods of a component. When an example is
executed, all replacements this example defnes are frst merged
into the component code, potentially overriding component code.
Together, component examples and replacements allow isolating
execution to just a part of the system by moving the entrypoint and
overriding code. By changing which example executes, developers
can inspect diferent behaviors of the systems without changing
their code. Finally, MµSE instrumentalizes the largest expressions
of each line to introduce probes. These probes show a live preview
of values that are seen for their expression during execution of the
active example.

In the following, we describe a running example using a robotic
car. Our developer wants to build an embedded program for the car
that follows a simple procedure shown in Figure 5. In our example,
the developer has the robotic car sitting on the table next to the
laptop, connected via USB, as shown in Figure 4. In the follow-
ing walkthrough, we will describe how the developer approaches
formulating the code for the Advance to Line state using MµSE.

4.1 Components: System Modules
The developer starts the implementation with the interface for the
low-level hardware devices, choosing the motor frst. Here, the
developer starts by creating a new component through the IDE’s
fle menu. The developer names the component Motor. MµSE now
generates a fle for the new component which contains a basic
skeleton stating its name as shown in Figure 6. In our reference
implementation, a component in MµSE is a C++ struct that may
have arbitrary methods and felds. While developers still have to
choose a name and instantiate the new component later, MµSE

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Methfessel, Beckmann, Rein, Ramson, Hirschfeld

Figure 5: In the frst state, Advance to Line, the car drives towards a black line, which the car detects using its light sensor. The
car stops once the line is reached and transitions to the next state. In the Buton state, the car waits until a button on the car is
pressed and transitions to the next state. In the Return state, the car uses its encoder (a device to measure driven distance) to
return to its initial position.

Figure 6: The generated skeleton of a new component named
Motor. In the top code pane, the implementation of the com-
ponent can be edited. To omit unnecessary implementation
details from the developer, MµSE hides syntax that may not
be changed by the developer, such as the struct keyword.

removes the friction that usually comes with introducing abstrac-
tion to encourage developers to place separate concerns in separate
components, even during prototyping.

4.2 Examples: Isolated Execution Paths
MµSE automatically creates an example for a new component. An
example in MµSE consists of

• a liveLoop method that is continuously executed while the
example is running, which is empty by default,

• its associated component that will be instantiated when the
example executes,

• a name identifying the example,
• any number of replacements that override functionality that
exists in the component, explained in subsection 4.4, and

• any number of external replacements that override the func-
tionality of component dependencies.

The defnition of an example is placed in a separate code editor
underneath the component’s code, with a tab for each example,
as shown in Figure 8. One example is considered the active exam-
ple, signifed by a green arrow. The example code editor initially
contains an empty skeleton of the component, as shown in Figure 7.

Figure 7: The developer populated the Motor component (top)
with three felds and a drive method. The example is renamed
to forward and calls the component’s drive function in the
example’s liveLoop. The green arrow indicates that this is the
active example, meaning that drive will be invoked and the
car is driving forward. Note that MµSE provides wrapped
components for analogWrite (as OutputPin) and other Arduino
API calls, such that users of MµSE can use the same conve-
niences for the API as with their own components.

The example code is stored alongside the components. Before
execution, MµSE merges the example code into the component
code. The merging adds any defnition from the example that is
not present in the component and overrides any existing defnition.
Thereby, the merging allows the developer to add methods, or
override members or code without polluting the component code.

To start, our developer renames the default example to forward

and sets it as the active example, as shown in Figure 7. Once the
active example has been set, MµSE begins executing its liveLoop

instead of the application’s main execution entrypoint, thereby
only executing code the developer explicitly asked to run within
the context of that example. Whenever the developer saves changes
in the code, the example will be restarted, meaning its previous

MµSE: Supporting Exploration of Sofware-Hardware Interactions Through Examples CHI ’24, May 11–16, 2024, Honolulu, HI, USA

component instance is discarded, a new one is instantiated, and
liveLoop is executed again.

Next, our developer introduces a drive method in the Motor com-
ponent that takes a decimal number denoting the speed at which
the motor should drive. To observe its efect, the developer calls
the drive method in the liveLoop of the forward example with an
arbitrary number, choosing 5. The car now begins driving forward,
at a very high speed. Aiming to reduce its speed, the developer
chooses 1 instead but the car moves at the same pace. By changing
the value to 0.5 and fnally observing a slowdown, the developer
concludes that values above 1 must be clamped.

Through further iterations, the developer fnds a small speed that
still overcomes friction at 0.2, which allows our developer to catch
the car before it leaves the table. Before each new execution, if the
car has moved too far, the developer has to manually reposition the
physical location of the robot. To complete the Motor component,
the developer then follows a similar process to create a stop method
that sets the drive speed to 0.

Since the example code pane is separate from the implementation
code pane but the example code is merged with the implementation
code, developers can augment or adapt the execution of examples
without afecting their fnal implementation code.

Now that our developer understands the motor device and has
encapsulated its low-level workings in a component, the developer
moves on to the light sensor that the car uses to detect when the
line on the table has been reached. Our developer creates a new
LightSensor component, creates a checkDetection method, names its
example "detect line", and calls the new method in the example’s
liveLoop, as shown in Figure 8. To understand what threshold to use
for detecting the black line, the developer writes pin.analogRead(),
which reads the current sensor value.

4.3 Probes: Automatic State Inspection
In MµSE, the outermost expression of each line of code is auto-
matically detected as a point-of-interest. For each point-of-interest,
MµSE inserts a probe [17] next to the expression, as also shown in
Figure 8. The probe reports the current value of the expression, the
minimum and maximum observed values, as well as a sparkline
that visualizes recent values [8]. This proactive placement does
allow the developer to see misconceptions about values, even when
not specifcally checking for them [14]. Consequently, developers
may sometimes even spot problems while still writing the code,
rather than spotting a problem only when observing the program’s
execution for correctness. For example, a probe inside a conditional
branch that is never reached will not report values, and may thus
indicate an incorrect condition.

According to the point-of-interest heuristic, the pin.analogRead()

expression for the light sensor receives a probe. Our developer can
thus repeatedly move the physical light sensor over the black line
on the table and observe the resulting sensor values. As the values
vary heavily and refresh many times per second, the sparkline [28]
and range of values help the developer understand the spectrum
of values, which values are outliers, which values are typical, and
how values are developing over time.

Figure 8: The LightSensor component is executed by its detect
line example. By moving the light sensor over the black line
and away from it, the developer can see the read value in the
probe. A sparkline shows the evolution of values, on the left
side are the maximum and minimum observed values. The
value on the right of the sparkline is the last reported value.

Figure 9: Probes can also show boolean values. Here, MµSE
automatically detected the full expression in the if-statement
to be the point-of-interest and attached a probe next to it.

After choosing 10.0 as the threshold, the developer adapts the
expression to analogRead(pin) < 10. MµSE now identifes the com-
pound expression as the new point-of-interest and changes the
probe to display binary values as seen in Figure 9. Our developer
can now check that the probe shows true when the sensor is above
the black line and false otherwise.

Now that both the components for the motor and the light sensor
are completed, the developer creates a component for the Advance to
Line state. Since the developer’s uncertainties about the behavior of
the hardware are eliminated and the components provide a higher
level of abstraction, the developer can write the state’s code without
leaking details or assumptions about the hardware. Once the code
for the state has been completed, the developer sets the example
that was generated for the AdvanceToLineState component as active
and observes that the car is behaving correctly.

As such, probes make print statements obsolete and even im-
prove by not requiring the manual creation of statements and sub-
sequent cleanup when they are no longer needed. Since values of
sensor reads are always shown and updated continuously, probes
reduce the gap between hardware and software and allow for a
better understanding of internal hardware behavior.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Methfessel, Beckmann, Rein, Ramson, Hirschfeld

4.4 Replacements: Stand-ins for Interfering
Code

Figure 10: The implementation and example for the Return
state. In the example pane on the bottom, two replacements
have been added: frst, the distance feld has been replaced
with a constant value of 1000 units. Second, the developer
added a replacement for an external dependency, the Motor
component. Here, the drive method has been replaced with
an empty implementation.

The developer continues this process for the button hardware
device, the Button state, and then the Return state, creating a com-
ponent for each. When working on the Return state, the developer
notices that the state requires information on the distance that
the car needs to drive back. This information is obtained from an
encoder on the robotic car, a device that stores the distance that the
car has moved. When executing the Return state in isolation, the car
has not moved yet, so the distance the encoder reads is 0. To validate
whether the written code is correct without having to move the
car each time beforehand, the developer creates a replacement [21].
Replacements in MµSE allow overwriting felds and methods of
components attached to examples by overriding their initializers or
implementation and are similar to mocks in unit-tests [2]. Through
the use of probes, the developer previously found that a value of
1000 units is a typical distance for the current setup. Accordingly,
the developer overrides the distance feld of the Return state, which
would usually read the value from the encoder, and instead assigns
a constant 1000 units. Now, when testing the example for the Return

state, the developer can observe the car correctly driving back the
hard-coded distance without requiring prior setup.

In the same manner, the developer can create external replace-
ments for felds and methods of dependent components of the com-
ponent attached to the example. For our Return state dependent
components are the Motor and EncoderPin components, as seen in
Figure 10. If the movement of the car is not relevant to the example
the developer is working on, disabling it is possible by adapting the
dependent Motor component. To do so, the developer creates an
external replacement for the Motor component’s drive method that
sets its implementation to be empty, thus efectively disabling car
movement. This external replacement is also shown in Figure 10.

Replacements are the fnal piece to make isolation of example
execution possible. Thanks to replacements, developers can create
sophisticated examples that mock prior execution, which allows
developers to obtain immediate feedback for code that depends on
a specifc state in hardware or software to have been reached. They
further allow gaining some control over aspects of the physical
world, as in the replacement of the motor, because of which manual
resetting the car’s position is not necessary.

4.5 Fast Restart and Example State
A development tool may support a feeling of immediacy in a tempo-
ral, spatial, or semantic sense [29]. As already described in subsec-
tion 4.2, temporal immediacy, that is a small temporal gap between
change and observation of execution, supports our developer when
exploring values for the motor’s speed.

MµSE implements live programming by discarding example and
component instances when the developer saves and instantly start-
ing new instances of both. The gap between restarts is near imper-
ceptible to the developer, thus implementing level 4 liveness [26].
When the old component is discarded and restarted, the state that
had accumulated in the component is reset. As an interesting con-
sequence, the state between the physical world and the program
may diverge upon reset, as MµSE has no control over the physical
world: if the car has already moved past the line, a restart of the
example will not reset its physical position, even though a reset
of the position may have been useful and intended as part of the
example the developer would have liked to formulate.

In general, instantaneous restart is an essential aspect of pro-
gramming tool design to allow developers to experiment with val-
ues and observe their efect [12]. If, instead, developers had to
wait for a restart, some questions, such as what is a well-working
value for speed for the Motor, would be signifcantly more time-
consuming to answer.

5 IMPLEMENTATION AND CASE STUDY
We have realized MµSE’s reference implementation as a plugin for
the CLion IDE. To support instrumentalization of application code
and fast reload, MµSE does not execute the application on the MCU.
Instead, the application code is executed on the host computer. A
minimal remote-procedure-call (RPC) kernel is fashed to the MCU
that receives requested outputs from the host and sends input from
the hardware to the host, as shown in Figure 12. Executing the
application code on the host computer allows introducing code in-
strumentalization for probes, examples, and replacements without

MµSE: Supporting Exploration of Sofware-Hardware Interactions Through Examples CHI ’24, May 11–16, 2024, Honolulu, HI, USA

incurring a signifcant slowdown. However, RPC communication in-
troduces a performance overhead with each I/O interaction, which
we discuss in subsection 5.2.

To make an MCU platform, such as Arduino, available for use
with MµSE, the API of the MCU has to be implemented as RPCs: all
API calls are forwarded from the host to the MCU. Implementing a
platform can be done incrementally: as support for a new platform
is added, platform implementors may choose to only provide RPCs
for calls of relevance to their current task and leave the rest as empty
mocks. Our reference implementation features an implementation
for Arduino that we used both in our user study and the below
case study, mapping most of the GPIO calls and some other utility
functions of the Arduino API3 in 90 LOC (lines of code).

5.1 Case Study: TonUINO
To demonstrate MµSE’s applicability to a real-world code base, we
used it to inspect the open-source Arduino project TonUINO4, a
hardware music player using buttons and RFID for control. The
project is of medium to small size (around 4000 LOC C++ without
dependencies) but features interesting I/O code for interacting with
the hardware buttons and RFID.

To make TonUINO executable in MµSE, we changed its build
system from the PlatformIO tools to use CMake and thus our plat-
form code instead of Arduino’s. Otherwise, as TonUINO already
split their code into classes, use with MµSE is straightforward: for
example, the project has dedicated classes for its playback buttons,
or a potentiometer for volume control. The code base already in-
cludes code that is well-suited for dedicated examples. For instance,
the Button3x3 class includes a pre-processor directive to disable
the actual component during compilation and instead output debug
information.

When the user requests execution of the TonUINO application
in the IDE, our CLion plugin instrumentalizes the source code by
wrapping expressions for automatic probes, as well as replacing
felds and methods. The plugin then compiles and launches the
instrumentalized copy in a backend process on the host machine
(Figure 12). When an I/O operation, such as an analogRead, is en-
countered during the execution of the application, the backend
process invokes the corresponding RPC, causing the MCU to exe-
cute analogRead and respond to the host with a serialized result value.
If that expression was wrapped in an automatic probe, the result
value is then also sent to our plugin along with an identifer for the
probe, before normal execution of the application resumes. When
receiving a probed value, the plugin uses the provided identifer to
fnd the responsible user interface representation of the probe and
updates it to refect the new value.

Using MµSE to Explore TonUINO. To show the usefulness of MµSE
for more complex projects, we used it to explore TonUINO’s code
base. MµSE is designed to support developers’ code understanding,
which is relevant both when formulating code from scratch, as
well as maintaining or exploring existing code bases. We pick a
case where we want to form a better understanding of the code
base beyond what the documentation ofers. As an example, we
observe that the Commands component triggers none commands when

3https://www.arduino.cc/reference/en/
4https://github.com/tonuino/TonUINO-TNG

activated by buttons that should start playback, in addition to the
playback command. We are unsure whether those none commands
are correct here or not. To investigate their source, we frst remove
the manual step of pressing the button each time to observe the
behavior: we create an example in the Commands component that
replaces the button hardware, as shown in Figure 11, and simulates
the button press. We proceed to inspect the automatic probes to
fnd that the source of the none values is getCommand, which we fnd
in turn receives them from a getCommandRaw call. In getCommandRaw, we
realize that the application may be confgured to support multiple
sources of input, for example, diferent types of button hardware. If
an input is not available, the source returns a none value as shown
in the probe, so we conclude that the behavior is correct. MµSE
thus supports our investigation of the TonUINO code base through
multiple layers of abstraction (from buttons, to commands, to raw
commands), allowing us to isolate the behavior we are interested
in and using probes to quickly trace the origin of values.

5.2 Latency Introduced by MµSE
MµSE prioritizes developer experience over runtime performance.
This trade-of may render some applications unsuitable for our
current implementation approach using RPC, depending on the
use of I/O in the specifc application, which our expert interviews
confrmed (subsection 6.5).

To better quantify the performance loss, we took 1000 measure-
ments for platform calls and averaged them. The connected micro-
controller was an ESP32-WROOM32, the host computer runs on an
Intel(R) Core(TM) i7-5600U 2.60GHz CPU. In that setup, for each
platform call, the RPC communication through serial introduced
an overhead of 5ms. Since non-platform-dependent code is run on
the developer machine instead of the MCU, performance may difer
here as well and might be faster or slower, depending on the host
machine. In our setup, code on the developer machine was around
fve times slower than on the MCU.

On the other hand, as MµSE is launching the application on
the host computer as opposed to uploading it to the MCU when
changed, program reloads are faster. While compiling and uploading
TonUINO via PlatformIO took around 12 seconds (8.6� compilation,
3.4� upload) with our setup, MµSE took seven seconds to start the
new version after a change (1.5� instrumentation, 3.4� compilation,
1� startup). Both measurements were taken on subsequent builds
where a build cache is already present. For our simpler user study
project with the same confguration, we observed for MµSE restart
times of 1.3 seconds (0.4� instrumentation, 0.2� compilation, 0.7�
startup), and for PlatformIO 15 seconds (9� compilation, 6� upload,
the high upload time appears to be due to less code optimization
used by PlatformIO, leading to a four times bigger binary). Since
compilation is required for PlatformIO and MµSE, execution times
will grow with the size of the code base for both, however, MµSE
could potentially beneft from C++ hot code reloading that is well-
supported on computer platforms5.

5See for example, https://learn.microsoft.com/en-us/visualstudio/debugger/hot-
reload?view=vs-2022

https://www.arduino.cc/reference/en/
https://github.com/tonuino/TonUINO-TNG
https://learn.microsoft.com/en-us/visualstudio/debugger/hot-reload?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/debugger/hot-reload?view=vs-2022

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Methfessel, Beckmann, Rein, Ramson, Hirschfeld

Figure 11: Excerpts of the TonUINO project’s Buttons and Commands components, as well as an example that we added to the Commands

component. The excerpts follow our example investigation: the example triggers the commands code for the play button but
the probe at the bottom of the commands interface shows that the ret alternates between 0 and 8. Tracing the origin of the
alternating values through the probes, we fnd getCommandsRaw that show the fuctuating behavior as some sources appear to be
null according to the probes.

Figure 12: The execution model of MµSE is designed to im-
prove reload times by omitting the expensive compile and
upload process. Instead, when the developer in the IDE plu-
gin requests execution, instrumented code is generated, and
run in the system’s backend on the developer’s host machine.
The backend captures API calls and sends these to the MCU
and sends captured values from probes in the developer’s
code to the IDE plugin.

6 EVALUATION
To understand how developers use our tool for building embed-
ded programs we conducted an exploratory user study with the
following research questions:

RQ1. How and when do developers address gaps and mismatches
in their mental model while using MµSE?

RQ2. How does isolated, live execution of examples in MµSE
impact the participants’ workfow?

6.1 Method
We conducted an exploratory user study with 12 CS students and
one professional programmer (9 male, 4 female) with prior experi-
ence programming Arduino MCUs. The study was also performed
with two experts; the results and fndings from their group are
discussed separately in subsection 6.5.

All participants were trained on using our tool for fve minutes
in a training exercise. After training, they were asked to solve a
programming task. Finally, we conducted a semi-structured inter-
view. Participants that we quote below are identifed as P1 through
P13, experts quotes as E1 and E2. All quotes are translated from
German. Sessions lasted for 30 minutes each and participants were
compensated 15€. During a session, both audio and the participants’
screen were recorded for later analysis.

In the main task, participants were given an assembled robotic
car, with the same setup as in our running example in section 4,
and a code template that already implemented a state machine and
some low-level concerns. As in our running example, we then asked
participants to use the motors, encoders, and light sensor to drive
to a black line and store the driven distance. After a button press,
the car should then drive back the same distance. The template is
available as part of the supplementary materials.

We split the task into three sub-tasks, corresponding to the states
of the state machine. Each sub-task was designed to pose questions
similar to those that participants of our formative study had men-
tioned. Table 1 shows these questions for each state. All problems

MµSE: Supporting Exploration of Sofware-Hardware Interactions Through Examples CHI ’24, May 11–16, 2024, Honolulu, HI, USA

primarily concern the interface to the hardware, for example, valid
value ranges or interpretation of behavior.

For the task design, we considered diferent sources of complex-
ity [22]. A frst version of the task, focused purely on comprehen-
sion, assisted by MµSE, but during pilot testing, we found that
participants took too long to understand the code we had provided,
which included some deliberate obfuscation to get participants to
use the tool. The fnal version of the task could be completed by
pilot testers and focused instead on a task that is created nearly
from scratch, allowing participants to form a full mental model
without prior input. Pilot testing also confrmed that the questions
in Table 1 did occur.

6.2 Overview of Results
In the following, we describe the results of the test runs with the
frst group. We describe the results and insights from the expert
test runs and interviews in subsection 6.5.

All participants were able to complete the tasks correctly within
20 minutes. Participants also all made use of examples and probes
of MµSE to better understand the behavior of their code while
working on the tasks. All participants implemented the sub-tasks
in order of execution in the state machine. Four participants did not
notice mistakes in a previous state before moving to the next state
and had to go back to fx them. As in the pilot tests, participants
did have to ponder the questions we designed into the tasks, as
discussed in detail in subsection 6.3.

Two crashes of MµSE occurred during the test runs, the frst due
to a hardware fault in the provided robotic car and the second due
to an untested edge case when executing code containing errors.
Fortunately, both crashes occurred just after switching from train-
ing to the task, so the participants could begin after a restart of the
tool and fxes to the hardware. While the low number of partici-
pants does not allow any quantitative analysis, we have collected
qualitative insights from observations of participants’ use of MµSE
and interviews to answer our research questions below.

6.3 RQ1: How and when do developers address
gaps and mismatches in their mental model
while using MµSE?

MµSE is designed to reduce mismatches between the developer’s
mental model and the implementation’s runtime. To classify dif-
ferent types of mismatches, we distinguish between known and
unknown mismatches (or unknowns). The tasks in our study re-
quired participants to explore and understand at least the questions
listed in Table 1, identifed as Q1 through Q6. Sometimes partic-
ipants were immediately aware of the unknowns present in the
upcoming subtask, sometimes they only discovered the unknown
when an error occurred.

In Table 2, we report how often participants treated assumptions
as known unknowns (explicitly validating before writing code for
the task) versus unknown unknowns (executing implementation
code and seeking the wrong assumption). It was also noticeable that
participants used diferent strategies for investigating unknowns.
Some participants took more time to refect on their knowledge and
assumptions, to help discover unknowns to test before writing any
implementation code. Others started writing code directly without

refecting on possible unknowns, seeking out the gaps in their
understanding only once they became apparent through incorrect
behavior during execution. While most challenges were binary in
that they were treated as either unknown or known unknown by
a participant, for Q6 we observed that three participants would
only partially evaluate their assumptions before writing but later
found additional unanticipated mistakes during the execution of
the fnished code. We include these instances in a separate Both
Unknowns column in the table.

Investigating Known Unknowns of Input With Probes. Most partic-
ipants explicitly investigated known unknowns of inputs, varying
by question as shown in Table 2. By writing a read expression that,
through MµSE’s points-of-interest heuristic, receives a probe and
by reloading the code, participants checked ranges, thresholds, or
behavior of hardware inputs, as required in Q2, Q4, and Q6. For
example, 11 participants found a suitable value for the light sensor
threshold by writing light.analogRead() and observing the reported
values in the probe when they held the sensor over the dark line or
the white table respectively. Once explored, participants proceeded
to construct code around their initial, exploratory expression. Many
participants noted the helpfulness of probes while coding, for ex-
ample, P5 said "Trying out behavior and value-ranges leads to [...] me
having more often the feeling that I understand what’s happening"
and P7 noted "I would have spent an order of magnitude more time
[on the task] without the system". P5 also praised the placement
of the probes on relevant code expressions: "You can see directly
where you need it what you are looking for". As MµSE places only
one probe per line, we also observed that some developers would
sometimes refactor a long expression into multiple expressions on
separate lines when they wanted to view both as probes. While
in the observed cases, code-readability tended to be improved by
the involuntary refactor, four participants requested to be able to
manually place multiple probes per line.

Investigating Unknown Unknowns of Input With Probes. Unlike
known unknowns concerning input, where participants frst wrote
test code, for Q4, where a button signal has to be noticed, we ob-
served that six participants frst wrote the full code for the Button
state, incorrectly assuming that the button returns 1 when pressed.
Instead, those participants would execute the code for the fnished
state and only then notice their unknown unknown on the behav-
ior of the button input. Here, MµSE’s automatic probe placement
was helpful, since it allowed participants to scan for mismatches in
reported values with their expectations. For the Button state, we sus-
pect that both the relatively lower complexity of the required code
and participants’ strong expectation that button-presses should
return 1 contribute to the increased number of participants treating
the assumption as an unknown unknown.

Investigating Known Unknowns of Output With Live Reload. Live
reload was commonly used to verify known unknowns on the ex-
ternal state that is mutated through the MCU’s output. The frst
action participants often took when starting the implementation of
a new component was to write code that answered uncertainties
on the correct approach to interface with hardware outputs. For
example, all participants explicitly investigated the value for Q1,
the slowest speed the motor can be driven at to still get the car to

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Methfessel, Beckmann, Rein, Ramson, Hirschfeld

Table 1: Questions in each sub-task, ordered by state. The code examples illustrate possible solutions in an abbreviated manner.
The questions need to be resolved by participants to complete each sub-task successfully.

Id State Question Code Example

Q1 Advance to Line What is the slowest speed that still drives? motors.drive(0.2)

Q2 Advance to Line What is the best threshold to detect a black line? light.analogRead() < 3

Q3 Advance to Line How to stop the motor from driving when the task is done? motors.stop()

Q4 Button How does the button signal the pressed state? button.digitalRead() == 0

Q5 Return How to drive backward? motors.drive(-0.2)

Q6 Return How to detect a reached starting position? encoder.read() > distance

Table 2: Number of times participants of the frst group actively sought to answer a known unknown versus encountering
wrong behavior during execution and seeking the corresponding unknown unknown per question. Sometimes we also observed
that participants did not gain a full understanding of a question after actively attempting to answer a known unknown and
therefore had to seek out mistakes that related to the same question. Correspondingly, these occurrences are reported in all
three columns.

Id Challenge # Unknown Unknowns # Known Unknowns # Both Unknowns

Q1 motor.drive(0.2) 0 13 0
Q2 light.analogRead() < 3 2 11 0
Q3 motors.stop() 10 3 0
Q4 button.digitalRead() == 0 6 7 0
Q5 motors.drive(-0.2) 0 13 0
Q6 encoder.read() > distance 7 9 3

Total 25 56 3

move forward. To do so, participants formulated a statement simi-
lar to motors.drive(speed) in the component’s loop, trying diferent
constants for speed and saving each time, to restart execution with
the new constant. Similarly, Q5 was commonly solved by writing in
code their assumption that driving backward can be done with neg-
ative speeds and testing it through execution. For both questions,
the changed state is external, which means participants only had
to observe the real world to validate the behavior. Instant reloading
on save thus allowed participants to quickly explore value ranges
for these outputs.

Lack of Support for Investigating Unknown Unknowns in Output.
Almost all (10) participants struggled with Q3, where the motor had
to be instructed to stop once reaching the line. While we assume that
the root cause of participants’ confusion was a quirk in the naming
scheme of the API we provided to the participants, this revealed that
MµSE provides little to no direct support for discovering unknown
unknowns in hardware output. The drive method of the motor
would have more aptly been called setSpeed, as it sets the speed
value on the pin, which instructs the motor to drive until another
value is given. However, these participants appeared to assume that
omitting the drive call would prompt the car to stop.

6.4 RQ2: How does isolated, live execution of
examples in MµSE impact the participants’
workfow?

MµSE supports investigation of assumptions through isolation and
live execution of examples, as described in subsection 6.3. However,

both isolation and liveness may have implications for the develop-
ers’ workfow; we will describe observations on both aspects in the
following.

Participants Used Replacements To Accelerate Feedback Cycles. Re-
placements in MµSE allow mocking dependencies of components
in examples. The Return state, where the robotic car’s previously
driven distance is required, was our task’s most likely candidate
for using replacements. Indeed, we observed that nine participants
replaced the value with an arbitrary constant or a value seen before
in state Advance to Line. All other participants who did not make
use of replacements instead skipped testing the state and chose
to test the entire state machine to see if their code for the Return
state would work. Another use of replacements by two participants
occurred when participants wanted to verify aspects of their com-
ponents unrelated to driving in states Advance to Line and Return
and thus created a replacement for the motor’s speed to stop the
car from moving.

Participants Struggled With Example Lifecycle. Our implementa-
tion initially did not include a means for developers to stop example
execution, only to switch to a diferent example. Through feedback
in our pilot for the study, we added a button to terminate exam-
ples manually, which would also reset (and stop) hardware devices
through an annotated of-state for all relevant outputs, like running
motors (these annotations were part of the code-template given to
participants). Still, we observed a mismatch between the partici-
pants’ workfow and the lifecycle of example execution during the
task. The template that we prepared for the tasks modeled states

MµSE: Supporting Exploration of Sofware-Hardware Interactions Through Examples CHI ’24, May 11–16, 2024, Honolulu, HI, USA

as components that have their own loop method, which should
return nullptr if the state machine is to remain in the same state
or return the next state, otherwise. Accordingly, the examples for
components modeled after states have a natural endpoint. The idea
of an endpoint of examples conficts with the example’s liveLoop,
which loops its body indefnitely while the example is active, to
provide continuous feedback. While this was desirable and helpful
when participants were investigating sensor values through the
example, for state components the continuous liveLoop produced
friction and confusion, as it was unclear to participants why their
code kept executing, even though it should stop according to the
state’s lifecycle.

Participants Disagreed On Save-to-Restart’s Beneft. As MµSE
restarts the active example when the save shortcut (Cmd+s) is
pressed, this presented an overloaded semantic to some developers.
Two participants specifcally mentioned that the combined save and
restart action supports their workfow to obtain feedback. Others
(six) pointed out that saving is a routine action for them that does
not necessarily correspond to a fnished thought or a valid program,
as previously observed for live programming more generally [16].
Consequently, for these participants, restarts on save sometimes
required them to react to sudden, unplanned changes in the hard-
ware, as the example restarted its execution, which we will discuss
in section 7.

6.5 Comparison Between Non-Expert and
Expert Usage

To understand potential diferences in the behavior of non-expert
and expert developers, we also performed the study with two ex-
perts. These experts had high self-rated expertise working in em-
bedded programming with MCUs (agree or strongly agree to the
question "I have extensive experience or have received extensive
formal education for programming for microcontrollers."). E1 re-
ported to have 25 years of professional experience working with
microcontrollers and E2 15 years. We followed the same test proce-
dure for both the student and expert groups but included additional
interview questions for the expert group concerning the use of
MµSE in a professional context. We performed the expert tests
and interviews remotely by giving the testers access to a host ma-
chine via remote desktop control and a camera feed for viewing the
hardware. Upon request of the testers, we would interact with the
hardware on their behalf as instructed (e.g., "move the car back",
"press the button", "rotate the potentiometer").

For most of the user study, the experts showed the same assump-
tions as our frst group. Known unknowns were observed for the
motor’s drive speed, the light sensors threshold, and the reversal
of the motor’s drive direction. Both experts directly wrote code to
turn of the motor, which the majority of participants from the frst
group only thought to include after observing faulty behavior.

Both experts wrote large parts of the necessary implementation
before executing the program. E1 mentioned that they may have felt
discouraged to execute often by the remote testing setup but praised
the quick restart times that they could otherwise observe. As the
remote connection also slowed the progress down, we interrupted
both tasks before the experts were able to fully complete them, in the
interest of their time. We made sure to wait until after both experts

had interacted with all parts of our system and had formulated
code for all parts of the solution such that we could derive their
assumptions before interrupting the task, such that a comparison
between the groups is possible.

Usefulness of MµSE’s Features. When asked during the interview,
both experts agreed that having a real-time visualization of runtime
values is helpful for their work, and E1 told us that "[Probes] allow
you to take a deep look into it [your program] and fnd your wrong
assumptions; they give access to all the layers". Compared to exist-
ing tools, E1 mentioned that the Sparkline visualization excels at
showing time-dependencies, which are often present in embedded
development. Both experts remarked that most of their mistakes
in their daily work come from small typing errors in complicated
algorithms or simple wrong assumptions that will normally be
overlooked but could be made visible through probes. When asked
about the role of documentation, both experts mentioned that it
is often incomplete or incorrect, or they form an incorrect inter-
pretation on their frst read, with E1 saying "I prefer to rely on code
if need be documentation inlined in code as comments". E1 further
commented on the usefulness of replacements: "This is exactly what
I want, to be able to execute the business logic without dependencies".
The experts recounted two use cases in a larger development setting
which replacements would support: The testing of the software
while the hardware is not fnished yet (which may take multiple
months), and supporting the simultaneous work of multiple soft-
ware developers on the code, while only one hardware prototype
exists. In both instances, the replacements would take the role of
mocked components.

Challenges in Using MµSE in a Professional Environment. We
further asked the experts about the challenges they see in using
an example-based live-programming tool in their work. Both re-
sponded with the importance of a barrier-free workfow: there are
classes of projects where real-time responses are important during
the development as well, meaning latency cannot be introduced by
the tooling. In addition, E2 mentioned that the automatic probes
will likely be too distracting in large source fles with multiple hun-
dreds of expressions. Instead, E2 would prefer an opt-in mechanism
for probes. E1 liked that MµSE is usable on existing code bases
with few modifcations and thus allows developers to collaborate
on the same code base, independent of whether they use MµSE or
not. In summary, E1 was excited about the prospect of using the
concepts found in MµSE platform in a professional environment,
while E2 expressed appreciation for the benefts of MµSE’s features,
especially for smaller code bases, but was skeptical of the runtime
performance overhead and the possible distraction of always-on
visualizations when applied to their own work.

7 DISCUSSION AND FUTURE WORK
MµSE is designed to align the developers’ mental model with the
execution of embedded programs, by helping them explicitly state
and better verify examples. Our exploratory user study reveals that
participants do feel supported and more efcient when working
on embedded programs in MµSE. The study also reveals potentials
and gaps in our design, along with observations of the preferred
use of MµSE’s features, which we will discuss below.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Methfessel, Beckmann, Rein, Ramson, Hirschfeld

Idealized vs. Actual Use. Especially in the interaction with ex-
amples, we observed mismatches between the workfow that we
designed based on input from participants of the formative study
and the actual usage of participants in our exploratory user study.
This includes

• not creating new examples for new use cases,
• not creating replacements for dependencies that hindered
testing,

• mixing example setup and implementation code,
• not verifying assumptions before implementation code, and
• verifying multiple assumptions together and not separately.

We assume this stems from the participants’ cost-beneft calcula-
tion [4], where the cost is the overhead of creating an example
and replacements to ensure its isolation, and the beneft is an exe-
cutable piece of code that documents an assumption and facilitates
its later iteration, the example. When documentation or iteration
of an assumption is deemed less important, for instance, because
the participant already believed to have fully understood a con-
cern, there is no need to create an example. Regardless, when the
understanding does turn out to be incomplete, MµSE still benefts
developers through automatic probe placement. As also observed
in the study, automatic probes as a passive, always-active helper
helped participants notice problems while they were formulating
implementation code, even if they did not actively seek them out.

Generalized vs. Specialized API Interface. When designing MµSE,
we tried to keep changes in the Arduino API and C++ syntax to a
minimum so as to not confuse developers already familiar with the
Arduino API and embedded programming. The concept of compo-
nents as central language construct that structures the program,
however, implies that using an existing code base with MµSE will
require some refactoring to conform to the component structure.
At the same time, as the Arduino API and other embedded pro-
gramming frameworks are designed for low abstraction levels for
communication with hardware, code written with these frameworks
communicates little of the original intent programmers had until
they introduce their own abstractions. Consequently, as MµSE only
knows the low-level interface, MµSE misses out on the potential of
more specialized visualizations or means to communicate and con-
trol state and behavior to developers. For example, the knowledge
that a motor is installed in the robotic car could tell MµSE to display
a probe near its usages in a component to show its current status
(if it is driving and at which speed). Another possibility would be
diferent probes for hardware devices, like color sensors and video
cameras. There already are some systems that use knowledge over
the domain to improve developer experience and even gain better
performance in diferent metrics [1, 11].

Control-fow Visibility. At times, participants of our study sought
to understand if certain parts of their implementation would be
reached by control fow, for example, branches of an if-statement.
Probes in MµSE already communicate aspects of control fow, for
instance by annotating the result of a condition for an if-statement,
or a moving or frozen probe graph indicating whether a line of code
was reached. However, these solutions are indirect and could be
improved, for example by deemphasizing lines that are not reached,
as for example done in Babylonian Programming [21]. In our study,

participants stated control-fow was not very understandable. Many
participants for example made the mistake of confusing the exam-
ple execution with the execution of the whole application, which
could have been prevented if the currently executed functions were
displayed more directly.

Per-Instance Replacements. Our design allows replacements of
both the component attached to the example and external replace-
ments of other components. However, all instances of this compo-
nent are replaced. As a future extension, it could be possible to only
replace one instance of a component or provide diferent replace-
ment implementations per instance. For example, a developer might
write a component that uses two light sensors for diferent pur-
poses. To test the component’s usage of the frst sensor in isolation
from the second, the developer might want to create a replacement
for the second light sensor that only emits constant values.

Automatic vs. Manual Probe Placement. As described in section 6.3,
participants of our study praised automatic probes. However, allow-
ing the developer to manually place probes would be an important
addition to ensure developers feel supported, not patronized, by
the tool. There is also the possibility to extend the placement of
probes to include more software-hardware boundaries, like show-
ing current values on GPIO pins and where in code they are set,
similar to Bifröst [18]. Additionally, users could defne their own
probe presentations to be used by MµSE.

Accessing Physical State. A major limitation of our solution is
that it stops at the system boundary of the MCU. The physical state
of the robotic car is not managed by MµSE and may thus break
the developer’s fast feedback loop. Future work could consider
dedicated reset instructions that would, for example, drive the car
back to a reset position. Alternatively, example execution could
involve prompts to the developer to confrm that the physical state
is arranged in a certain manner before proceeding, as is for exam-
ple already done in the educational tool ElectroTutor [30]. These
instructions could allow the description of well-defned scenarios
that support reproducibility, especially when shared between dif-
ferent developers. Another problem is safety. P1 answered when
questioned about the live response: "I like it for non-dangerous com-
ponents, like LEDs or buttons, for other things it is more difcult",
pointing out that some hardware devices are quick to damage them-
selves or others when passed the wrong values. More control over
physical state could prevent such accidents, by being aware of com-
ponents needing more safety precautions and not activating them
without warning. MµSE takes frst steps in this direction, as anno-
tations in program code inform the system that certain pins need
to be reset when switching examples, such as setting the speed pin
of the motor to 0.

Limitations of the Reference Implementation. As already men-
tioned in the expert interviews in subsection 6.5, being able to
use general embedded code without many modifcations and a
low-latency execution for real-time applications are both essential
features for some classes of embedded programs. MµSE’s reference
implementation does not fulfll those requirements yet, as some con-
cepts like interrupts (as explained in subsection 2.1) often used in
embedded programming are not supported and performance over-
head is introduced for platform calls, as discussed in subsection 5.2.

MµSE: Supporting Exploration of Sofware-Hardware Interactions Through Examples CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Both of these problems are a result of our RPC-based approach that
splits execution between the host and MCU to beneft from acceler-
ated restart times. An alternative design could compile and upload
examples and implementation directly to the MCU, removing the
need for an adapted implementation per platform, the communica-
tion overhead, and any prior limitations, such as interrupt support.
However, a design that moves the entire execution to the MCU intro-
duced overhead when communicating probe values and restarting
the program. This impact of the overhead from probes would be
signifcantly lessened, if probes would be re-designed to be opt-in,
as requested by E2 (subsection 6.5).

Limitations of the Evaluation. We conducted an exploratory user
study that sought to identify strengths and weaknesses in MµSE’s
design, testing with comparatively few participants and only for
a small window of time. Similarly, the task we designed was kept
small to ft in one continuous session and refects only a slice of
activities that developers engage in when working with microcon-
trollers. To assess how our observations generalize, a larger study
would need to be designed that follows participants over a longer
period of time.

8 RELATED WORK
The problem of mismatches in the developer’s mental model and
execution has been addressed by other tools, both for general-
purpose programming and for the embedded systems domain. In
this section, we want to compare existing solutions to our approach.

General-purpose Example-based Live Programming Tools. In our
formative study, we saw that developers use ad-hoc examples to test
and validate their mental model but that existing tooling does not
fully support this workfow. We concluded that an example-based
live programming tool would better support developers’ behavior.
For general-purpose software, this problem has already been en-
countered before. Babylonian [21] is another example-based live
programming tool with the purpose of improving developers’ un-
derstanding of their code. Both Babylonian and our tool let de-
velopers create explicit examples and view runtime values using
probes. However, Babylonian focuses on local scope and annotates
functions with examples instead of components. This is because, in
general programming, functions are often the fundamental building
blocks of programs and act as the central entry point for execution.
Contrarily, because of the real-time architecture of embedded pro-
grams, with looping functions and interrupts, relevant behavior of
programs often only emerges over multiple iterations of a single
function.

Other Solutions Supporting Developers’ Mental Model. Other tools
for embedded programming include fow-based solutions [19], like
FlowBoard [5], which is primarily designed for educational use.
FlowBoard lets developers code on an iPad connected to bread-
boards. Code is "written" using connected nodes and executed live
on changes. The authors focused on making coding and building
hardware as seamless as possible. A seamless system has high im-
mediacy between its hardware and software parts and therefore
reduces the gap between them. The editor shows probes both on
individual input-pins and nodes, to help developers understand the
live runtime.

Inspection and Control via Simulation. As described in subsec-
tion 4.5, examples in MµSE necessarily combine state in software,
over which we have full control, and state in the physical world,
over which we have little to no control. A common solution to
this problem is to use simulations, for example via Gazebo [10].
Specifcally for our use cases, where unreliability of hardware is
one of the most common issues, simulations may only assist in
an initial design phase, until the quirks of the concrete hardware
platform have to be considered.

Programming Tools Supporting Exploration and Prototyping. The
activities we observed developers perform in both our studies are
comparable to those of the opportunistic programmer [4]. Develop-
ers consider some code impermanent and choose trade-ofs between
long-term maintainability and fast iteration to gain insights. Simi-
larly, a variety of tools exist to support exploratory programming.
For example, Juxtapose [7], CoExist [25], or Variolite [9] support
developers in fnding optimal values during prototyping or explo-
ration of domains by allowing the fast exploration of alternatives.

9 CONCLUSION
This paper presented MµSE, an example-based live-programming
environment for prototyping embedded programs. MµSE supports
the developer’s existing workfow, as described by participants
of our formative study, of aligning their mental model with ac-
tual execution through experimentation with code. Rather than
resorting to commenting code and print statements to enable iso-
lated experimentation within the context of their implementation,
MµSE ofers frst-class examples and automatic probes. In an ex-
ploratory user study, we found that the participants’ workfow was
well-supported by MµSE, and especially automatic probes were
praised. We also noticed some areas where more work is needed,
for instance for inspecting and managing the physical state of the
hardware. Through two expert interviews, we found that MµSE’s
concepts would be appreciated in a professional setting but in par-
ticular impact on performance and distraction through always-on
visualizations should be investigated. In conclusion, we believe
MµSE shows how a workfow for embedded software could be real-
ized that supports embedded programmers to perform faster, more
efective prototyping.

REFERENCES
[1] Amichi Amar. 2010. Support for Resource Constrained Microcontroller Programming

by a Broad Developer Community. Ph. D. Dissertation. USA. Advisor(s) Krintz,
Chandra. AAI3439403.

[2] Kent Beck. 2002. Test Driven Development: By Example. Addison-Weslay Longman
Publishing Co., Inc., Bostan, MA, USA.

[3] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed Wires:
Investigating the Problems of End-User Developers in a Physical Computing Task.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 3485–3497. https://doi.org/10.1145/2858036.2858533

[4] Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R. Klemmer. 2008. Oppor-
tunistic Programming: How Rapid Ideation and Prototyping Occur in Practice. In
Proceedings of the 4th International Workshop on End-User Software Engineering
(Leipzig, Germany) (WEUSE ’08). Association for Computing Machinery, New
York, NY, USA, 1–5. https://doi.org/10.1145/1370847.1370848

[5] Anke Brocker, René Schäfer, Christian Remy, Simon Voelker, and Jan Borchers.
2023. Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learn-
ing to Code for Embedded Electronics. ACM Trans. Comput.-Hum. Interact. 30, 1,
Article 2 (mar 2023), 36 pages. https://doi.org/10.1145/3533015

https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1145/1370847.1370848
https://doi.org/10.1145/3533015

CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[6] Jonathan Edwards. 2004. Example Centric Programming. In Companion to
the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (Vancouver, BC, CANADA) (OOPSLA
’04). Association for Computing Machinery, New York, NY, USA, 124. https:
//doi.org/10.1145/1028664.1028713

[7] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klem-
mer. 2008. Design as Exploration: Creating Interface Alternatives through Par-
allel Authoring and Runtime Tuning. In Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology (Monterey, CA, USA)
(UIST ’08). Association for Computing Machinery, New York, NY, USA, 91–100.
https://doi.org/10.1145/1449715.1449732

[8] Jane Hofswell, Arvind Satyanarayan, and Jefrey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (<conf-loc>,
<city>Montreal QC</city>, <country>Canada</country>, </conf-loc>) (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.
org/10.1145/3173574.3174106

[9] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[10] N. Koenig and A. Howard. 2004. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3. 2149–2154
vol.3. https://doi.org/10.1109/IROS.2004.1389727

[11] Anis Koubaa. 2016. Robot Operating System (ROS): The Complete Reference (Volume
1) (1st ed.). Springer Publishing Company, Incorporated.

[12] Jan-Peter Kramer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. 2014. How
live coding afects developers’ coding behavior. In 2014 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 5–8. https://doi.org/10.
1109/VLHCC.2014.6883013

[13] Chao Li, Rui Chen, Boxiang Wang, Zhixuan Wang, Tingting Yu, Yunsong Jiang,
Bin Gu, and Mengfei Yang. 2023. An Empirical Study on Concurrency Bugs
in Interrupt-Driven Embedded Software. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
1345–1356. https://doi.org/10.1145/3597926.3598140

[14] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing Misconceptions
about Code with Always-on Programming Visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario,
Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA,
2481–2490. https://doi.org/10.1145/2556288.2557409

[15] Henry Lieberman and Christopher Fry. 1995. Bridging the Gulf between Code and
Behavior in Programming. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-
Wesley Publishing Co., USA, 480–486. https://doi.org/10.1145/223904.223969

[16] Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2017. Edit Transactions:
Dynamically Scoped Change Sets for Controlled Updates in Live Program-
ming. The Art, Science, and Engineering of Programming 1, 2 (April 2017).
https://doi.org/10.22152/programming-journal.org/2017/1/13

[17] Sean McDirmid. 2013. Usable Live Programming. In Proceedings of the 2013
ACM International Symposium on New Ideas, New Paradigms, and Refections on
Programming & Software (Indianapolis, Indiana, USA) (Onward! 2013). Association
for Computing Machinery, New York, NY, USA, 53–62. https://doi.org/10.1145/
2509578.2509585

[18] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell
Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst: Visualizing and
Checking Behavior of Embedded Systems across Hardware and Software. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 299–310. https://doi.org/10.1145/3126594.3126658

[19] Christopher Métrailler and Pierre-André Mudry. 2015. ESPeciaL: An Embedded
Systems Programming Language. In Proceedings of the 6th ACM SIGPLAN Sym-
posium on Scala (Portland, OR, USA) (SCALA 2015). Association for Computing
Machinery, New York, NY, USA, 51–55. https://doi.org/10.1145/2774975.2774982

[20] Michael J. Pont. 2001. Patterns for Time-Triggered Embedded Systems: Building
Reliable Applications with the 8051 Family of Microcontrollers. ACM Press/Addison-
Wesley Publishing Co., USA.

[21] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming: Design and Implementation of an Integra-
tion of Live Examples into General-purpose Source Code. The Art, Science, and En-
gineering of Programming 3, 3 (feb 2019). https://doi.org/10.22152/programming-
journal.org/2019/3/9

[22] Patrick Rein, Tom Beckmann, Eva Krebs, Toni Mattis, and Robert Hirschfeld. 2023.
Too Simple? Notions of Task Complexity used in Maintenance-based Studies of
Programming Tools. In 2023 IEEE/ACM 31st International Conference on Program
Comprehension (ICPC). IEEE. https://doi.org/10.1109/icpc58990.2023.00040

Methfessel, Beckmann, Rein, Ramson, Hirschfeld

[23] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding. The Art, Science, and En-
gineering of Programming 3, 1 (jul 2018). https://doi.org/10.22152/programming-
journal.org/2019/3/1

[24] Hans-Christoph Steiner. 2018. Firmata : Towards Making Microcontrollers Act
Like Extensions of the Computer. In Proceedings of the International Conference
on New Interfaces for Musical Expression. Zenodo, 125–130. https://doi.org/10.
5281/zenodo.1177689

[25] Bastian Steinert, Damien Cassou, and Robert Hirschfeld. 2012. CoExist: Over-
coming Aversion to Change. In Proceedings of the 8th Symposium on Dynamic
Languages (Tucson, Arizona, USA) (DLS ’12). Association for Computing Machin-
ery, New York, NY, USA, 107–118. https://doi.org/10.1145/2384577.2384591

[26] Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.
In 2013 1st International Workshop on Live Programming (LIVE). IEEE. https:
//doi.org/10.1109/live.2013.6617346

[27] J. Trenouth. 1991. A Survey of Exploratory Software Develop-
ment. Comput. J. 34, 2 (01 1991), 153–163. https://doi.org/10.
1093/comjnl/34.2.153 arXiv:https://academic.oup.com/comjnl/article-
pdf/34/2/153/1400604/340153.pdf

[28] Edward R. Tufte. 1986. The visual display of quantitative information. Graphics
Press, USA.

[29] David Ungar, Henry Lieberman, and Christopher Fry. 1997. Debugging and
the Experience of Immediacy. Commun. ACM 40, 4 (apr 1997), 38–43. https:
//doi.org/10.1145/248448.248457

[30] Jeremy Warner, Ben Lafreniere, George Fitzmaurice, and Tovi Grossman. 2018.
ElectroTutor: Test-Driven Physical Computing Tutorials. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology (Berlin,
Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA,
435–446. https://doi.org/10.1145/3242587.3242591

https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1449715.1449732
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1145/3597926.3598140
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/223904.223969
https://doi.org/10.22152/programming-journal.org/2017/1/13
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/2774975.2774982
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1109/icpc58990.2023.00040
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.5281/zenodo.1177689
https://doi.org/10.5281/zenodo.1177689
https://doi.org/10.1145/2384577.2384591
https://doi.org/10.1109/live.2013.6617346
https://doi.org/10.1109/live.2013.6617346
https://doi.org/10.1093/comjnl/34.2.153
https://doi.org/10.1093/comjnl/34.2.153
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/34/2/153/1400604/340153.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/34/2/153/1400604/340153.pdf
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/3242587.3242591

	Abstract
	1 Introduction
	2 Background
	2.1 Obtaining Input from Hardware Devices
	2.2 Observing and Debugging State in Embedded Programs
	2.3 Reloading Code on MCUs

	3 Formative Study
	3.1 Developers Decompose Code in Components
	3.2 Developers Seek To Isolate Example Execution
	3.3 Developers Observe Inputs and Outputs Differently

	4 Design
	4.1 Components: System Modules
	4.2 Examples: Isolated Execution Paths
	4.3 Probes: Automatic State Inspection
	4.4 Replacements: Stand-ins for Interfering Code
	4.5 Fast Restart and Example State

	5 Implementation And Case Study
	5.1 Case Study: TonUINO
	5.2 Latency Introduced by MµSE

	6 Evaluation
	6.1 Method
	6.2 Overview of Results
	6.3 RQ1: How and when do developers address gaps and mismatches in their mental model while using MµSE?
	6.4 RQ2: How does isolated, live execution of examples in MµSE impact the participants' workflow?
	6.5 Comparison Between Non-Expert and Expert Usage

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	References

