
The Declarative Nature of Implicit Layer Activation
Stefan Ramson Jens Lincke

Hasso Plattner Institute
University of Potsdam, Germany
{�rstname.lastname}@hpi.de

Robert Hirschfeld

ABSTRACT
Context-oriented programming (���) directly addresses context
variability by providing dedicated language concepts: layers, units
of modularity, store context-dependent behavior. During runtime,
layers can be applied dynamically depending on the current context
of the program.

Various activation means for layers have been proposed. Most
of them require developers to model context switches explicitly.
In contrast, implicit layer activation (���) allows developers to
bind the activation status of a layer to a boolean predicate. The
associated layer stays automatically active as long as the given
predicate evaluates to true.

Despite its declarative semantics, ��� is usually implemented in
an imperative fashion. In this paper, we present and compare two
implementation variants for ��� in ContextJS: an imperative and a
reactive implementation. Furthermore, we discuss their trade-o�s
regarding code complexity as well as runtime overhead.

CCS CONCEPTS
• Software and its engineering → Language features; Object
oriented languages; Multiparadigm languages;

KEYWORDS
Implicit Layer Activation, Reactive Programming, Active Expres-
sions, Context-oriented Programming

ACM Reference format:
Stefan Ramson, Jens Lincke, and Robert Hirschfeld. 2017. The Declarative
Nature of Implicit Layer Activation. In Proceedings of COP’17, Barcelona ,
Spain, June 19-20, 2017, 10 pages.
https://doi.org/10.1145/3117802.3117804

1 INTRODUCTION
Context variability is an inherent property to most modern soft-
ware systems. However, wide-spread programming languages do
not support concepts for context variability in a principled way.
The context-oriented programming (���) paradigm [3] directly
addresses context variability by providing dedicated language con-
cepts to describe contexts and context-dependent behavior. Layers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
COP’17, June 19-20, 2017, Barcelona , Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4971-0/17/06. . . $15.00
https://doi.org/10.1145/3117802.3117804

allow to store all behavior related to a speci�c context in a single
unit of modularity.

To apply context-dependent behavior, layers can be activated
dynamically through various activation means. Most activation
means require developers to model context switches in an explicit
manner [5]. For example, using global layer activation, a layer
becomes (de-)activated at a certain point in imperative control �ow,
usually guarded by a condition. Similarly, dynamic layer activation
allows to explicitly activate a layer for the extent of a message
send. Even integrations with event-based concepts, such as event
transitions, require to emit the respective events explicitly.

In contrast to most activation means, implicit layer activation
(���) [10] provides a mechanism to declaratively de�ne contexts.
By describing the extent of a context rather than context switches,
��� relieves the programmer from the task of manually describing
the boundaries of contexts. While ��� o�ers promising properties,
only few ��� implementations support ��� [2, 4, 5, 10]. Despite its
declarative semantics, ��� is usually implemented in an imperative
fashion, similar to other activation means. In particular, the current
layer composition stack is determined imperatively when calling
a layered method. At this very point in time, the ��� framework
checks the conditions of all implicitly activated layers. However,
this non-reactive approach is only possible, because most ��� im-
plementations are limited to adapting object and class methods [8].
These concepts are passive entities that only a�ect the program
behavior when called explicitly. Therefore, the limitation to passive
entities enables the ��� framework to check the condition at a
well-de�ned point in the program. In contrast, active entities, such
as constraints, may initiate behavior by themselves without be-
ing called explicitly. Extending the concept of ��� beyond method
decoration requires to activate scoped entities at speci�c times.

Using a reactive implementation, a ��� framework can eagerly
enable implicitly activated layers and, thus, deal with active entities
properly. Thus, a reactive implementation might pave the way to
apply the concept of ��� to other types of abstraction beyond partial
methods. For example, a layer could be used to limit the scope of a
constraint: when a condition becomes true, the corresponding layer
becomes active and the constraint immediately takes e�ect [6],
instead of waiting for an additional, explicit trigger.

Similar to active entities, life-cycle callbacks, such as onActivate
and onDeactivate, should be executed immediately when a layer
becomes active or inactive, respectively. As an example, an onActivate
callback might set up some state required by the layer while the
onDeactivate callback cleans up this additional state. An impera-
tive implementation might lead to unintended behavior as it delays
the execution of the callbacks unnecessarily. Instead, the life-cycle
callbacks expect to be executed eagerly. Again, integrating ��� prop-
erly with reactive concepts, such as life-cycle callbacks, requires a
reactive implementation for ��� itself.

7

COP’17, June 19-20, 2017, Barcelona , Spain Stefan Ramson, Jens Lincke, and Robert Hirschfeld

Contributions. Both examples above highlight advantages of a
reactive implementation for ���. However, imperative implemen-
tations are more prevalent. Thus, in this paper, we examine the
di�erent approaches to implement ���. In particular, we make the
following contributions:

• We extend ContextJS [7] with implicit layer activation (���)
in two variants: an imperative implementation based on an
extended dispatch and a reactive implementation based on
Active Expressions [9].

• We compare the two implementations regarding code com-
plexity and runtime overhead.

Outline. The remaining of this paper is structured as follows.
In section 2, we provide an overview of relevant prior work. In
section 3, we present two implementation variants for ���. Then,
section 4 discusses the complexity of the presented implementations.
Furthermore, we compare both implementation according to their
runtime performance in section 5. Finally, section 6 concludes this
work.

2 BACKGROUND
This section presents relevant prior work. In particular, we discuss
the concept of ��� as well as Active Expressions as a means to
implement ��� using reactive programming concepts.

2.1 Implicit Layer Activation
I�� [10] is an activation means with declarative semantics. To be
precise, developers can associate a layer to an arbitrary object-
oriented (��) expression:

layer . activeWhile (expression)

By associating a layer with an expression, the layer is not activated
or deactivated at a �xed time. Instead, the layer is active as long as
the given condition holds, as depicted in the following example:

1 var shouldTrace = f a l s e ;
2 new Layer () . refineObject (Networking , {
3 fetch (url) {
4 console . log (' f e t c h ' + url) ;
5 return proceed (url) ;
6 }
7 }) . activeWhile (() = > shouldTrace) ;
8
9 Networking . fetch (' example . com ') ; / / p r i n t s

n o t h i n g
10 shouldTrace = true ;
11 Networking . fetch (' example . com ') ; / / p r i n t s '

f e t c h example . com '

Despite these declarative semantics, ��� is typically implemented
in an imperative manner. An underlying system keeps track of all
layered methods, such as the method fetch adapted in line 3. Then,
when calling a layered method, the current layer composition stack
is determined [5]. At this very point in time, the ��� framework
checks the conditions of all implicitly activated layers [1, 8]. If the
condition evaluates to true, the method adaptation is taken into

account for this method call, as the modi�ed behavior in line 11
illustrates.

Considering the declarative semantics of ���, a reactive imple-
mentation does not seem a stretch [6]: an underlying reactive frame-
work may monitor variables referenced by the given condition.
When such a variable changes, the condition is re-evaluated and
the corresponding layer is activated or deactivated accordingly.

2.2 Active Expressions
Active Expressions [9] is a basic reactive programming concept
designed to aid language designers when implementing reactive
programming concepts in �� environments. In particular, Active
Expressions relieve developers from the tedious task of change
detection by hiding implementation details behind a uni�ed ab-
straction: �� expressions. Developer provide the expression to be
monitored to the reactive framework by calling the aepxr function:

aexpr (expression) . onChange (callback)

The speci�ed callback gets executed whenever the evaluation result
of the expression changes.

Using Active Expressions, one can signi�cantly reduce the im-
plementation e�ort when creating new reactive programming con-
cepts. As ��� �ts well into the working principle of Active Expres-
sions, we use Active Expressions in order to simplify the reactive
implementation of ���. The provided expression may contain any
�� mechanism, such as information hiding and polymorphism. As
a consequence, the resulting ��� implementation integrates well
with �� environments.

3 IMPLEMENTING IMPLICIT LAYER
ACTIVATION IN CONTEXTJS

Currently, ContextJS [7] does not support implicit layer activation
(���) as an activation means1. However, due to the reactive and
declarative nature of the web, ContextJS might bene�t from this
activation means. Thus, we show how to extend ContextJS with
���, �rst using an imperative implementation, then using a reactive
implementation with Active Expressions.

3.1 Imperative Implementation
ContextJS supports multiple activation means, including global
activation and dynamic activation for the extent of a function call.
When calling a layered method, the currentLayers function is
responsible for computing an appropriate layer composition, either
by using a cached result or, if necessary, by determining a new one
using global and dynamic layers:

1 export function currentLayers () {
2 / / p a r t s om i t t e d f o r r e a d a b i l i t y
3 i f (! current . composition) {
4 current . composition = composeLayers (

LayerStack) ;
5 }
6 return current . composition ;
7 }

1https://github.com/LivelyKernel/ContextJS accessed on April 16th, at commit 938e117;
npm package: contextjs in version 2.0.0

8

The Declarative Nature of Implicit Layer Activation COP’17, June 19-20, 2017, Barcelona , Spain

For our extension2, we add a separate list of layers to represent
layers potentially activated through ���, called implicitLayers.
To implicitly activate a layer, we add the method activeWhile to
the class Layer:

1 activeWhile (condition) {
2 i f (! implicitLayers . includes (th i s)) {
3 implicitLayers . push (th i s) ;
4 }
5 th i s . implicitlyActivated = condition ;
6 return th i s ;
7 }

This method has two responsibilities. First, in line 3, it adds the
layer to the list of implicitly activated layers, if necessary. Second,
it stores the provided argument condition, a boolean function to
specify whether the layer should be active, as seen in line 5. Using
the list of implicitly activated layers, we can get all layers that are
actually activated by �ltering this list for layers with their condi-
tions evaluating to true, as done by the getActiveImplicitLayers
function:

1 function getActiveImplicitLayers () {
2 return implicitLayers . filter (layer = >

layer . implicitlyActivated ()) ;
3 }

Using the getActiveImplicitLayers function, we can now adjust
the computation of the current layer composition in currentLayers
:

1 export function currentLayers () {
2 / / p a r t om i t t e d f o r r e a d a b i l i t y
3 var current = LayerStack [LayerStack . length

� 1] ;
4 i f (! current . composition) {
5 current . composition = composeLayers (

LayerStack) ;
6 }
7 return current . composition@@@ . concat (

getActiveImplicitLayers ()) @@@ ;
8 }

To include implicitly activated layers, we append all layers activated
through ��� to the already computed layer composition. As a result,
the returned layer composition contains dynamically activated,
globally activated, and implicitly activated layers. Note that we
cannot cache implicitly activated layer, because we have no means
to invalidate the cache on changes to the condition.

3.2 Reactive Implementation
In contrast to the imperative implementation, we do not introduce
a separate data structure for implicitly activated layers. Instead,
we treat implicitly activated layers as being globally active as long
as their condition evaluates to true. As a result, we can reuse the
existing layer composition algorithm once a layer becomes active.

2https://github.com/active-expressions/programming-contextjs-plain accessed on
April 16th 2017, at commit 22deb54

Table 1: Code complexity of the presented implementations
compared to the existing ContextJS version in terms of the
number of ��� nodes.

��� nodes (sloc) Complete Di�erence to
ContextJS

Unmodi�ed ContextJS 2485 (568)

Imperative Implementation 2557 (580) 72 (12)

Reactive Implementation 2525 (575) 40 (7)

To do so, the activeWhile method has to setup dependencies to
detect changes to the given condition and update the layer accord-
ingly. For this implementation3, we wrap the given condition in
an Active Expression. Using this Active Expression, we can easily
implement the appropriate reactive behavior:

1 activeWhile (condition) {
2 aexpr (condition)
3 . onBecomeTrue (() = > th i s . beGlobal ())
4 . onBecomeFalse (() = > th i s . beNotGlobal ()

) ;
5 return th i s ;
6 }

Using the onBecomeTrue (line 3) and onBecomeFalse (line 4) meth-
ods, the layer is eagerly activated or deactivated whenever the
expression result becomes true or false, respectively. Thus, the
layer is automatically taken into account as a globally activated
layer by the existing layer composition algorithm. Additionally,
those methods automatically adjust the initial state of the layer
depending on the current result of the given expression.

4 IMPLEMENTATION COMPLEXITY
We quantitatively compare both implementations of ��� in terms
of code complexity. As a measurement for code complexity, we
count the total number of abstract syntax tree (���) nodes in each
implementation. We summarize our measurements in Table 1. Ac-
cording to Table 1, the reactive implementation based on Active
Expressions has a lower complexity compared to the imperative
implementation.

However, more important than these quantitative results is the
way both implementations introduce the concept of ��� to the
ContextJS library. The imperative implementation introduces an
additional layer type: implicitly activated layers. Furthermore, the
imperative implementation requires knowledge about the underly-
ing dispatch mechanism in order to extend the layer composition
algorithm to take implicitly activated layers in account. In contrast,
the reactive variant reuses the existing semantics by only modifying
layers through already exposed methods. Thus, the reactive variant
only requires knowledge about the usage of ContextJS, not about
its internal working principles.

3https://github.com/active-expressions/programming-contextjs-aexpr accessed on
April 16th 2016, at commit 07437e8

9

COP’17, June 19-20, 2017, Barcelona , Spain Stefan Ramson, Jens Lincke, and Robert Hirschfeld

5 PERFORMANCE EVALUATION
To identify the performance penalties implied by the di�erent imple-
mentation variants described in section 3, we provide and discuss
multiple micro benchmark scenarios in the following. For each
scenario, we compare the imperative implementation, described in
subsection 3.1, with the Active Expression-based implementation,
described in subsection 3.2. Active Expressions allow to choose
between multiple underlying implementation strategies. Thus, we
compare against two strategies. First, the interpretation strategy
uses dynamic interpretation to punctually insert property accessors
into the system space. Second, the compilation strategy performs a
heavy-weight source code transformation to notify about changes
in the system state.

In subsection 5.1, we discuss our benchmark setup, test suite,
and statistical methods. Appendix A provides the source code of
the benchmark suite.

5.1 Performance Benchmark Setup and
Statistical Methods

All benchmarks were executed on the following system:
• CPU andmemory: Intel(R) Core(TM) i7-6650UCPU@2.20GHz
2.21 GHz, 4 Logical cores; 16.0 GB Main Memory

• System software: Windows 10 Pro (OS Build 15063)
• Runtime: Google Chrome version 57.0.2987.133; benchmarks
executed using Karma test runner version 1.2.0 and Mocha
test framework version 3.0.2

• Transpiler and bundler: babel-cli 6.11.4 (no es2015 preset)
and rollup 0.34.8,

• Libraries under test:
– programming-contextjs-plain at commit 1360e1a4
– programming-contextjs-aexpr at commit 07437e85

• Benchmark suite: aexpr-ila-benchmark at commit 6a6395b6.
We measured the execution time of a benchmark by wrapping
the benchmark in a function and measuring the time between
calling the function and it returning. Each benchmark con�guration
was iterated 100 times, with only the �nal 30 iterations taken into
account for the overall performance measurement to mitigate the
e�ects of the V8 just-in-time compiler (���).

Statistical Methods. We make no assumptions on the underly-
ing distribution and provide Tukey boxplots in Figure 1 to 4 to
visualize the median and variation of the measured timings. Exact
median timings are given in Table 2 to 5. Slowdowns are computed
by dividing the median execution times of the measurements to
compare. Con�dence bounds of this statistic are given by the 2.5-th
and 97.5-th percentile of the bootstrap distribution of the computed
ratio.

5.2 Overhead for Initial Association
First o�, we analyze the initial cost to create associations between
a layer and a declarative context. For this purpose, we measure the
4https://github.com/active-expressions/programming-contextjs-plain accessed on
April 16th 2017
5https://github.com/active-expressions/programming-contextjs-aexpr accessed on
April 16th 2017
6https://github.com/active-expressions/aexpr-ila-benchmark accessed on April 16th
2017

20

40

60

80

100

120

140

160

N
or
m
al
iz
ed
 E
xe
cu
tio
n
Ti
m
e
(Im

pe
ra
tiv
e
=
1.
0)

Imperative
Implementation

Active Expressions
(Interpretation)

Active Expressions
(Compilation)

Implementation Strategy

Figure 1: Execution times for declaratively associating
10,000 layers with a context using ���. The thick red line
indicates the median, the upper and lower edges of the box
are the second and third quartile and the end of thewhiskers
are themost outlying values in a 1.5 inter-quartile range dis-
tance from the second and third quartile.

Table 2: Benchmark timings and relative slowdowns for
declaratively associating 10,000 layers with a context using
���. Slowdowns given as ratio of medians with 95% con�-
dence intervals.

timing [ms] slowdown
(vs Imperative)

Imperative 28.09
Reactive (Interpretation) 3976.06 141.57 [138.74 - 144.77]

Reactive (Compilation) 70.29 2.50 [2.14 - 2.64]

time to associate 10,000 layers with the same context expression.
As a running example, we use the following expression for all
benchmarks:

() = > context . enabled ()

The variable context references an instance of the class Context
with a single Boolean property representing whether the current is
active (full implementation provided in Appendix A). The enabled
method provides access to this status. Thus, we execute layer.
activeWhile(() => context.enabled()) 10,000 times.

Discussion. As Figure 1 reveals, the imperative implementation
has the lowest runtime for creating associations to declarative con-
texts. This result is to be expected, as the imperative implementation
only adds the given layer to a global array when creating the as-
sociation. In contrast, both reactive strategies have to set up their
respective dependency mechanisms in order to monitor for changes.
Accordingly, they impose high overhead as shown by the relative
slowdowns in Table 2. While the compilation strategy runs the
given expression in native JavaScript, the interpretation strategy
uses a full-�edged JavaScript-in-JavaScript interpreter to determine

10

The Declarative Nature of Implicit Layer Activation COP’17, June 19-20, 2017, Barcelona , Spain

200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200

N
or
m
al
iz
ed
 E
xe
cu
tio
n
Ti
m
e
(Im

pe
ra
tiv
e
=
1.
0)

Imperative
Implementation

Active Expressions
(Interpretation)

Active Expressions
(Compilation)

Implementation Strategy

Figure 2: Performance benchmark results for a high ratio of
context switches to invocations of context-dependent behav-
ior. The exact ratio is 1000 to 1. All results are normalized by
the imperative median. The normalization is the quotient
of execution time of the respective implementation and the
time of the imperative solution.

Table 3: Benchmark timings and relative slowdowns for fre-
quently switching contexts.

timing [ms] slowdown
(vs Imperative)

Imperative 0.42
Reactive (Interpretation) 125.63 295.61 [284.28 - 305.44]

Reactive (Compilation) 799.34 1880.81 [1851.14 - 1924.57]

relevant dependencies, which explains the very high impact of the
interpretation strategy. The relative overhead compared to the im-
perative implementation is subject to the complexity of the given
expression.

5.3 Frequent Context Switches
The above measurements show only the initial overhead of the
respective implementation strategy. In the following, we identify
the overhead that is imposed by implicit context switches. Contin-
uing the previous scenario, we enable and disable a context object
implicitly associated with a layer by ���. We disable and re-enable
this context 500 times each. Then, we test the expected semantics
by calling context-dependent behavior:

expect (adaptee . call ()) . to . equal (expected) ;

Thus, 1,000 context switches occur before using context-dependent
behavior once. We measure the time it takes to repeat this process
100 times.

Discussion. According to the results in Figure 2, both reactive
implementations impose a very high overhead for frequent context
switches. As highlighted in Table 3, the interpretation strategy is
over 2 orders of magnitude slower and the compilation strategy is

1
2
3
4
5
6
7
8
9
10
11
12
13
14

N
or
m
al
iz
ed
 E
xe
cu
tio
n
Ti
m
e
(Im

pe
ra
tiv
e
=
1.
0)

Imperative
Implementation

Active Expressions
(Interpretation)

Active Expressions
(Compilation)

Implementation Strategy

Figure 3: Performance benchmark results for calling
context-dependent behavior 1,000 times before switching
contexts. All results are normalized by the median of the
imperative implementation.

Table 4: Benchmark timings and relative slowdowns for fre-
quently invoking context-dependent behavior.

timing [ms] slowdown
(vs Imperative)

Imperative 17.63
Reactive (Interpretation) 14.98 0.85 [0.80 - 0.96]

Reactive (Compilation) 120.12 6.81 [6.39 - 7.08]

over 3 orders of magnitude slower. This high overhead is to be ex-
pected, because the imperative implementation does not invoke any
additional behavior when switching contexts implicitly. In contrast,
both reactive strategies activate the respective layer globally, thus,
invalidating the current layer composition. The compilation strat-
egy has a higher overhead than the interpretation strategy, because
the applied source code transformation a�ects all computations.
In contrast, the interpretation strategy uses property accessors to
punctually intercept the program execution.

5.4 Frequent Message Sends
The previous experiment hints a high overhead for reactive imple-
mentations when switching contexts frequently. In the following
benchmark, we examine the overhead introduced by each imple-
mentation strategy when frequently calling context-dependent be-
havior. In particular, we switch context 10 times, with invoking
context-dependent behavior 1,000 times after each context switch.

Discussion. As Figure 3 reveals, both, the imperative and the
interpretation-based implementation have similar performance for
frequent invocation of context-dependent behavior. According to
Table 4, the reactive variant using the interpretation strategy is
slightly faster than the imperative implementation. The reason is
that the reactive implementation utilizes the caching mechanism of
ContextJS. When calling context-dependent behavior subsequently,

11

COP’17, June 19-20, 2017, Barcelona , Spain Stefan Ramson, Jens Lincke, and Robert Hirschfeld

2

4

6

8

10

12

N
or
m
al
iz
ed
 E
xe
cu
tio
n
Ti
m
e
(Im

pe
ra
tiv
e
=
1.
0)

Imperative
Implementation

Active Expressions
(Interpretation)

Active Expressions
(Compilation)

Implementation Strategy

Figure 4: Performance measurements for calling a method
with 1,000 implicitly activated layers 1,000 times, normal-
ized by the median of the imperative implementation.

the dispatch mechanism checks whether the layer composition
became invalid since the last dispatch. If not, ContextJS can reuse
the existing layer composition. Because the reactive implementa-
tions update layers on change, no additional checks are required.
In contrast, the imperative implementation has to check the cur-
rent status of each implicitly activated layer on dispatch. Because
the imperative implementation cannot anticipate context switches,
the layer composition needs to be recomputed for each method
invocation.

Even with this conceptual advantage, the compilation strategy
is considerably slower than the imperative implementation. This
result highlights the high performance overhead imposed by the
source code transformation. The reason for this high overhead is
that the invocation of detection hooks, such as access to object
members, is highly polymorphic, and, therefore hard to optimize
by ���s. As every access to a property and every call of a member
function is wrapped, this strategy can cause severe performance
penalties.

5.5 Multiple Layers
So far, we only measured the in�uence of a single layer on context
switches and method invocations. In the following benchmark, we
are interested in the in�uence of a higher number of implicitly
activated layers when invoking context-dependent behavior. Thus,
we create 1,000 layers, each associated with a di�erent context
using ���. We enable each context and measure the time to invoke
the same context-dependent method 1,000 times. Additionally, we
check against the expected behavior.

Discussion. As shown in Figure 4 and Table 5, the interpretation-
based strategy provides a better performance compared to the
imperative implementation in this scenario. This result is to be
expected, because the imperative strategy needs to reevaluate the
expressions for each implicitly activated layer on each dispatch, as
explained in subsection 5.4. Thus, the interpretation strategy per-
forms about three times faster than the imperative implementation.

Table 5: Benchmark timings and relative slowdowns for in-
voking context-dependent behavior 1,000 times with 1,000
implicitly activated layers.

timing [ms] slowdown
(vs Imperative)

Imperative 226.72
Reactive (Interpretation) 68.80 0.30 [0.29 - 0.31]

Reactive (Compilation) 1992.30 8.79 [8.44 - 9.06]

Interestingly, the relative overhead between the imperative im-
plementation and the compilation strategy is similar to the results
in subsection 5.4. One possible reason is again the V8 ���. Because
we execute the same code in a loop, the execution always follows
the same code pathes. Thus, the assumptions made by the ��� are
rarely invalidated. In contrast, the source code transformation of
the compilation strategy introduces highly polymorphic code that
is rather di�cult to optimize.

The presented benchmark highlights the potential provided by reac-
tive implementations of ���. In particular, systems with long living
layers and frequent invocations of context-dependent behavior
might bene�t from such an implementation. However, the bench-
marks also indicate potential performance problems. In particular,
the production of ���-unfriendly code represents a major source
of performance issues. Further studies on the e�ect of the di�er-
ent implementation variants are needed, especially with regard to
real-world ��� applications.

6 CONCLUSION
In this paper, we presented two possible implementations for im-
plicit layer activation (���): an imperative and a reactive one. Our
comparison shows that the reactive implementation matches the
declarative semantics of ��� more closely. The runtime overhead
of the two implementations highly depends on the speci�c usage
scenario: the imperative implementation is suitable for a system
with frequent context switches, while the reactive implementation
is more suitable for systems with frequent invocations of context-
dependent behavior.

A reactive implementation seems viable and o�ers interesting
possibilities: the eager (de-)activation of layers allows for the inte-
gration of ��� with layer life-cycle callbacks and active entities, for
example by scoping the e�ect of constraints [6].

REFERENCES
[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael

Perscheid. 2009. A Comparison of Context-oriented Programming Languages.
In International Workshop on Context-Oriented Programming (COP). ACM, New
York, NY, USA, Article 6, 6 pages. DOI:https://doi.org/10.1145/1562112.1562118

[2] Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, Andoni Lombide Car-
reton, and Wolfgang De Meuter. 2012. Interruptible context-dependent execu-
tions: a fresh look at programming context-aware applications. In Symposium
on New Ideas in Programming and Re�ections on Software (Onward!), 2012. ACM,
67–84. DOI:https://doi.org/10.1145/2384592.2384600

[3] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-oriented
Programming. Journal of Object Technology (JOT) 7, 3 (March 2008), 125–151.

12

The Declarative Nature of Implicit Layer Activation COP’17, June 19-20, 2017, Barcelona , Spain

DOI:https://doi.org/10.5381/jot.2008.7.3.a4
[4] Hiroaki Inoue and Atsushi Igarashi. 2016. A library-based approach to context-

dependent computation with reactive values: suppressing reactions of context-
dependent functions using dynamic binding. In 15th International Conference on
Modularity (MODULARITY), 2016. 50–54. DOI:https://doi.org/10.1145/2892664.
2892669

[5] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2015. Generalized
layer activation mechanism through contexts and subscribers. In 14th Inter-
national Conference on Modularity (MODULARITY), 2015. ACM, 14–28. DOI:
https://doi.org/10.1145/2724525.2724570

[6] Stefan Lehmann, Tim Felgentre�, and Robert Hirschfeld. 2015. Connecting
Object Constraints with Context-oriented Programming: Scoping Constraints
with Layers and Activating Layers with Constraints. In 7th InternationalWorkshop
on Context-Oriented Programming (COP). ACM, Article 1, 6 pages. DOI:https:
//doi.org/10.1145/2786545.2786549

[7] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. 2011. An
Open Implementation for Context-oriented Layer Composition in ContextJS.
Science of Computer Programming (SCICO) 76, 12 (2011), 1194–1209. DOI:https:
//doi.org/10.1016/j.scico.2010.11.013

[8] Kim Mens, Rafael Capilla, Nicolás Cardozo, and Bruno Dumas. 2016. A taxonomy
of context-aware software variability approaches. InWorkshop on Live Adaptation
of Software SYstems (LASSY), March 14 - 18, 2016 (MODULARITY Companion 2016).
ACM, 119–124. DOI:https://doi.org/10.1145/2892664.2892684

[9] Stefan Ramson and Robert Hirschfeld. 2017. Active Expressions: Basic Building
Blocks for Reactive Programming. The Art, Science, and Engineering of Pro-
gramming (<Programming>) 1, Issue 2 (2017). DOI:https://doi.org/10.22152/
programming-journal.org/2017/1/12

[10] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. 2007. Context-oriented
Programming: Beyond Layers. In International Conference on Dynamic Languages
(ICDL), 2007. ACM, 143–156. DOI:https://doi.org/10.1145/1352678.1352688

13

COP’17, June 19-20, 2017, Barcelona , Spain Stefan Ramson, Jens Lincke, and Robert Hirschfeld

A PERFORMANCE BENCHMARK SOURCE
CODE

In the following, we describe important parts of the source code
used for the benchmark described in section 5. As described in sub-
section 5.2, all benchmarks rely on instances of the class Context
to represent context information. The following source code is the
complete implementation of that class:

1 c l a s s Context {
2 constructor () {
3 th i s . disable () ;
4 }
5 enable () { th i s . state = true ; }
6 disable () { th i s . state = f a l s e ; }
7 enabled () { return th i s . state ; }
8 }

Furthermore, the benchmarks described in subsection 5.3, 5.4, and
5.5 use the class Adaptee:

1 c l a s s Adaptee {
2 call () { return �1; }
3 }

In those benchmarks, we adapt the behavior of the call method
with layers activated through ���.

The source code of the benchmarks in section 5 is given in List-
ing 1 to 4. For readability and conciseness, we omitted framework-
speci�c code required by the Karma test runner and the Mocha test
framework, as described in subsection 5.1. Whole source code can
be found in its corresponding repository7.

7aexpr-ila-benchmark at commit 6a6395b; https://github.com/active-expressions/
aexpr-ila-benchmark accessed on April 16th 2017

Listing 1: Source code for the benchmark described in sub-
section 5.2.

1 l e t bool = f a l s e ;
2 l e t layers = [] ;
3
4 perfTest (" Overhead f o r I n i t i a l A s s o c i a t i o n " ,

{
5 setupRun () {
6 layers . length = 0 ;
7 for (l e t i = 0 ; i < 1 0 0 0 0 ; i++) {
8 layers . push (new Layer ()) ;
9 }
10 } ,
11 run () {
12 layers . forEach (layer = > {
13 layer . activeWhile (aexpr (() = > bool))
14 }) ;
15 } ,
16 teardownRun () {
17 resetLayers (layers) ;
18 }
19 }) ;

14

The Declarative Nature of Implicit Layer Activation COP’17, June 19-20, 2017, Barcelona , Spain

Listing 2: Source code for the benchmark described in sub-
section 5.3.

1 l e t context , adaptee , layer ;
2
3 perfTest (" F r equen t Contex t Change " , {
4 setupRun () {
5 context = new Context () ;
6 adaptee = new Adaptee () ;
7 layer = new Layer ()
8 . refineObject (adaptee , {
9 call () {
10 return 4 2 ;
11 }
12 })
13 . activeWhile (aexpr (() = > context .

enabled ())) ;
14 } ,
15 run () {
16 for (l e t i = 0 ; i < 1 0 0 ; i++) {
17 for (l e t j = 0 ; j < 5 0 0 ; j++) {
18 context . disable () ;
19 context . enable () ;
20 }
21 expect (adaptee . call ()) . to . equal (4 2) ;
22 }
23 } ,
24 teardownRun () {
25 resetLayers ([layer]) ;
26 }
27 }) ;

Listing 3: Source code for the benchmark described in sub-
section 5.4.

1 l e t context , adaptee , layer ;
2
3 perfTest (" F r equen t Message Sends " , {
4 setupRun () {
5 context = new Context () ;
6 adaptee = new Adaptee () ;
7 layer = new Layer ()
8 . refineObject (adaptee , {
9 call () {
10 return 4 2 ;
11 }
12 })
13 . activeWhile (aexpr (() = > context .

enabled ())) ;
14 } ,
15 run () {
16 for (l e t i = 0 ; i < 5 ; i++) {
17 context . enable () ;
18 for (l e t j = 0 ; j < 1 0 0 0 ; j++) {
19 expect (adaptee . call ()) . to . equal (4 2) ;
20 }
21 context . disable () ;
22 for (l e t j = 0 ; j < 1 0 0 0 ; j++) {
23 expect (adaptee . call ()) . to . equal (�1) ;
24 }
25 }
26 } ,
27 teardownRun () {
28 resetLayers ([layer]) ;
29 }
30 }) ;

15

COP’17, June 19-20, 2017, Barcelona , Spain Stefan Ramson, Jens Lincke, and Robert Hirschfeld

Listing 4: Source code for the benchmark described in sub-
section 5.5.

1 l e t contexts = [] , adaptee ;
2 l e t layers = [] ;
3
4 perfTest (" Mu l t i p l e Laye r s " , {
5 setupRun () {
6 l e t numberOfLayers = 1 0 0 0 ;
7
8 adaptee = new Adaptee () ;
9 layers . length = 0 ;
10 for (l e t i = 0 ; i < numberOfLayers ; i++)

{
11 (index = > {
12 l e t context = new Context () ;
13 l e t layer = new Layer ()
14 . refineObject (adaptee , {
15 call () {
16 return index ;
17 }
18 })
19 . activeWhile (aexpr (() = >

context . enabled ())) ;
20
21 contexts . push (context) ;
22 layers . push (layer) ;
23 }) (i) ;
24 }
25 contexts . forEach ((context , index) = > {
26 context . enable () ;
27 }) ;
28 } ,
29 run () {
30 for (l e t i = 0 ; i < 1 0 0 0 ; i++) {
31 expect (adaptee . call ()) . to . be .

greaterThan (�1) ;
32 }
33 } ,
34 teardownRun () {
35 resetLayers (layers) ;
36 }
37 }) ;

16

	Contents
	Peace COrP: Learning to Solve Conflicts Between Contexts (NicolÃ¡s Cardozo, Ivana Dusparic, Jorge H. Castro)
	NicolÃ¡s Cardozo, Ivana Dusparic, Jorge H. Castro

	The Declarative Nature of Implicit Layer Activation (Stefan Ramson, Jens Lincke, Robert Hirschfeld)
	Stefan Ramson, Jens Lincke, Robert Hirschfeld

	Push-based Reactive Layer Activation in Context-oriented Programming (Tetsuo Kamina, Tomoyuki Aotani, Hidehiko Masuhara)
	Tetsuo Kamina, Tomoyuki Aotani, Hidehiko Masuhara

