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ABSTRACT

Scoping behavior adaptations using dynamic extent is a crucial
part of Context-oriented Programming (cop). In a synchronous
execution model, dynamic extent ensures the activation of a layer
for the entire duration of a block. An asynchronous execution model,
however, breaks the intended semantics of dynamic extent. For
example, using the await keyword postpones the execution of the
block and returns to its caller. Thus, dynamic extent deactivates the
behavior adaptation. Consequently, when resuming the postponed
execution the layer is no longer active.

In this paper, we propose a variant of dynamic extent that acti-
vates a layer for a block and all its logically-connected asynchro-
nous operations. We show how zones can be used to track the
asynchronous dynamic extent of a block. Further, we provide an
implementation of our approach as an extension to ContextJS in
JavaScript.

CCS CONCEPTS

» Software and its engineering — Object oriented languages;
Control structures; Coroutines.

KEYWORDS

Context-oriented Programming, Activation Means, Dynamic Ex-
tent, Asynchronous Programming, Zones, JavaScript, Promises

ACM Reference Format:
Stefan Ramson, Jens Lincke, Harumi Watanabe, and Robert Hirschfeld. 2020.
Zone-based Layer Activation: Context-specific Behavior Adaptations across

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

COP’20, July 21, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8144-4/20/07...$15.00
https://doi.org/10.1145/3422584.3422764

Jens Lincke
Software Architecture Group
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
jens.lincke@hpi.uni-potsdam.de

Robert Hirschfeld
Software Architecture Group
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

Logically-connected Asynchronous Operations. In 12th International Work-
shop on Context-Oriented Programming and Advanced Modularity (COP’20),
Fuly 21, 2020, Virtual Event, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3422584.3422764

1 THE RISE OF ASYNCHRONOUS
EXECUTION

Context-oriented Programming (cop) [7] dynamically extends sys-
tem behavior in a cross-cutting manner. One may use partial meth-
ods to extend or override the behavior of the base system. Partial
methods can be grouped together into units of modularity called
layers. Depending on the changing context of the application, a
layer may be activated dynamically at runtime, changing the sys-
tem behavior by applying its partial methods on the system‘s base
behavior. To activate the layer, developers may use one of many
proposed activation means [17]. One of the most frequently used
activation means is dynamic extent [10]. Using dynamic extent de-
velopers may activate layers only for the duration of a message
send. Dynamic extent ensures to automatically deactivate the corre-
sponding layers at the end of the message send [2]. Thus, dynamic
extent allows developers to safely adapt system behavior for a
well-defined portion of the execution without accidentally leaking
behavior adaptations into other parts of a program.

The design of cop in general and dynamic extent in particular
assume a synchronous execution model. In recent years, however,
asynchronous programming became popular, especially in context
of Ul programming and client-server communication. In an asyn-
chronous programming model the execution of a method may be
postponed by returning a promise!. At some later point in time
the promise may resolve, causing the asynchronous operation to
resume its execution. As a result, asynchronous semantics may
be described concisely while seemingly avoiding a "callback hell"
using dedicated language concepts such as async/await.

Unfortunately, such asynchronous execution models break with
the linear control flow assumed by most cop implementations [5].

Yor a future if emphasis is put on the datum to be calculated by the postponed execution.
In context of this paper, both can be seen as equivalent.
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While we define dynamic extent through lexical scoping, asynchro-
nous execution is not bound by the linear fashion of executing
nested functions. Instead, execution scopes may overlap and inter-
leave in time. As a result, the safe semantics of the dynamic extent
activation means cannot be guaranteed anymore: layers might be
missing from the current layer composition in a postponed asyn-
chronous task, or might leak to code not intended to run with a
certain behavior adaptation. Neither of the aforementioned cases
is desirable.

In order to get the intended behavior of scoping the dynamic
behavior exactly as specified by the lexical scope, we need to keep
the layer composition consistent across all asynchronous opera-
tions logically-connected to a method. Zones? describe a persistent
context across logically-connected asynchronous operations. Ad-
ditionally, zones may control asynchronous behavior by observing
and intercepting the execution of asynchronous tasks. Thus, zones
can provide a suitable foundation for an extension to cop to better
integrate with asynchronous execution models.

Contributions. In this paper, we propose an approach to consis-
tently apply behavior adaptations activated through dynamic extent
throughout the entire execution of an asynchronous function. In
particular, we make the following contributions:

e The design of an adaptation of scopes with dynamic extent
across logically-connected asynchronous operations by inte-
grating with zones, including
— A scheme to reify layer stacks created by dynamic extent

with the possibility to capture the current layer stack and
replay it at some later point.

— An integration of cop with zones to track and apply layers
consistently on logically-connected asynchronous opera-
tions.

e An implementation of this design in JavaScript as an exten-
sion to ContextJS [12].

e An extension of the Dexie.Promise library, an implementa-
tion of a zone-like concept for JavaScript, with necessary
zone life-cycle callbacks.

Availability. You can find the full JavaScript implementation ac-
companying this work on GitHub?. Furthermore, a running version
of the example application discussed in section 6 is available at the
project’s GitHub pages®.

Organization. In the remainder of this paper, we first introduce
a motivational example to further illustrate the need for an asyn-
chronous dynamic extent in section 2. In section 3 we review the
concept of zones as a persistent context across logically-connected
asynchronous operations. Based on zones, we present our approach
to apply dynamic extent to asynchronous operations in section 4.
In section 5 we present an implementation of this approach as an
extension to Context]S in JavaScript. We discuss an implementation
of our motivational example using our approach in section 6. In
section 7 we highlight similar approaches to integrate cor with

https://dart.dev/articles/archive/zones accessed on June 24t 2020
3hitps://github.com/onsetsu/area51 accessed on 30" June 2020
4https://onsetsu.github.io/area51/experiments/github-access.html accessed on 30t
June 2020
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asynchronous programming. We describe possible directions for
future work in section 8 and conclude in section 9.

2 IN NEED FOR AN ASYNCHRONOUS
DYNAMIC EXTENT

To illustrate the semantic mismatch of asynchronous execution and

dynamic extent consider the following example®. We want to write

an application that lists the repositories of a user, including the
author, time, and message of the last commit.

async function displayRepos() {

await Github.repos ()
(let repo of repos) {

const commits = await repo.commits()
display(repo, commits.last)

const repos =
for

}

The above function displayRepos implements the desired behav-
ior: we first query the GitHub API to list all repositories of the
current user in line 2. After awaiting the response we send another
Web request for each repository to query the latest commit, ap-
pending it to a result list in line 5. @ in Figure 1 shows dynamic
behavior when executing displayRepos.

Unfortunately, this solution only shows a list of public repos-
itories. To also list private repositories of the user, we use the
layer AuthLayer to provide proper authorization as a cross-cutting
concern throughout our application. We therefore wrap the afore-
mentioned code into a call to withLayers to adapt the requests with
the necessary access token.

withLayers ([AuthLayer], async () => {
const repos = await Github.repos()
for (let repo of repos) {
const commits = await repo.commits ()
display(repo, commits.last)
}
1)

One might simply expect the above code to display information for
public and private repositories of the user as shown in (2) in Figure 1.
However, the code actually results in an error in line 4 because the
AuthLayer is no longer active and we try to access information of
a private repository without proper authorization. To understand
this misbehavior we have to look at how the asynchronous callback
is executed and how and when the AuthLayer is activated.
Executing withLayers first activates the AuthLayer, then pro-
ceeds by calling the given function. A proper request to the GitHub
API is created, including authorization due to the AuthLayer (code
fragment highlighted in green). Once the request is sent, we await
the response from the server. At this point the underlying JavaScript
engine postpones the remainder of the function and returns con-
trol flow back to the caller of the function, Context]S‘s withLayers
in this case (). Assuming the function returned properly, Con-
textJS removes the AuthLayer from the current layer stack, then,
returns control flow back to its own caller. Some time later GitHub

Sexample code is given in JavaScript throughout the paper
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Figure 1: Annotated call traces for running the displayRepos function? discussed in section 1. The interaction of dynamic

extent with asynchronous code leads to unexpected behavior.

2 for brevity, the for-loop is summarized as a single asynchronous operation even though it itself includes an await expression

answers the request and sends a response to the browser. Thus,
our postponed function resumes and attempts to loop through the
repo array (code fragment highlighted in orange). However, as the
AuthLayer is now deactivated, no access token is attached when
requesting the commits of the first private repository in line 4. Thus,
the GitHub API returns with an authorization error. As seen in this
example, unawareness of asynchronous computation may result
in unintended behavior.

One way to fix this behavior as an application developer is to
bring the AuthLayer activation closer to the calls it actually adapts:

const repos = await withLayers ([AuthLayer],
() => Github.repos())
for (let repo of repos) {
const commits = await withLayers ([
AuthLayer], () => repo.commits())
display(repo, commits.last)

}

Unfortunately, this solution leads to architectural overhead due to
code duplication. Further, the code becomes more error prone in
case of code changes. Finally, this solution undermines the cross-
cutting nature of COP to adapt multiple modules from a separate
module: having to specify layer activations rather specifically de-
feats the purpose of COP itself.

From the perspective of a system developer, one solution would
be to keep the AuthLayer active until the given asynchronous block

is completely settled (@). However, this naive solution leaks the ac-
cess token to code outside the withLayers call, allowing other code
fragments to access private repositories. In general, behavior adap-
tations activated on asynchronous functions may linger indefinitely
in the system, causing unexpected and unwanted behavior.

The bigger, more general problem here is that while we define
dynamic extent through lexical scoping, asynchronous execution
is not bound by the linear fashion of executing nested functions.
Instead, execution scopes may overlap and interleave in time. To
achieve the intended behavior of scoping the behavior adaptation
as specified by the lexical scope ((®), we need to extent our notion
of dynamic extent to include all logically-connected asynchronous
operations as well.

3 HANDLING CONTEXT ACROSS
ASYNCHRONOUS OPERATIONS USING
ZONES

As described in section 2, layer compositions are not consistent
across logically-connected asynchronous operations. This consis-
tency would require cop to be aware of asynchronous operations
and their relationships. Zones are a concept found in asynchronous
programming to relate logically-connected asynchronous opera-
tions. In the following, we provide the necessary background on
zones and describe why they are a suitable foundation for our
asynchronous dynamic extent.

A zone is an execution context that persists across logically-
connected asynchronous operations. As an example, consider the
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displayRepos function in section 2 as part of a larger application.
In addition to displaying the repositories of a user, the application
also displays the latest contributions of that user.

async function displayRepos () {
const repos = await Github.repos()
// omitted for brevity
}
runZoned (async () => {
await displayRepos ()
await displayContributions ()
'onsetsu' })

b

Both parts involve requests to a remote server, thus, they are asyn-
chronous by nature. To track which user‘s repositories and contri-
butions we are interested in, we run both calls in a new zone using
runZoned in line 5 with the user as a zone property (line 8). Zone
properties act similar to a thread-local storage, allowing a developer
to access resources attached to the current zone. In our example,
we may access the current user through Zone.current.user from
any code executed in the current zone, for example in line 7 of the
following code:

Github {

async repos () {

await this.api('/repos')
return json.map(r new Repository(r))

{ user:

class
static
const json =
=>
}
static async api(path) {
const url = GH_API + Zone.current.user +
path
const response = await fetch(url)

return response.json()

}

Zone properties provide even deeply nested functions, such as api
in line 6, with access to the current user without polluting every
subsequent function's signature with an additional parameter (here
displayRepos, repos, and api).

Zone properties persist regardless of whether the invoked be-
havior is synchronous or asynchronous. Whenever asynchronous
tasks get scheduled within a zone, the postponed code will execute
in the same zone as the zone which existed at the time of invoking
the asynchronous API. As a result the zone can be tracked across
asynchronous invocations and, for example, let the user persist to
the displayContributions call.

Each stack frame is executed within exactly one zone® and can
never change between zones. However, a function may be executed
from multiple zones. Executing the above code from multiple zones
safely provides access to the GitHub data of multiple users without
interfering with one another.

In addition to providing a persistent execution context, zones
allow developers to control asynchronous behavior by observing
and intercepting the execution of asynchronous tasks. In particular
zones expose a variety of life-cycle callbacks, for example when

Sdefaults to a <root> or global zone
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Listing 1: Running our GitHub-querying block with autho-
rization but without caching. After the initial request is sent
the block is postponed. Next, the CacheLayer is activated
globally. Thus, the CacheLayer should cache future requests
but not within the previously postponed block.

withLayers ([AuthLayer], () => {
withoutLayers ([ CacheLayer], async () => {
const repos = await Github.repos()
for (let repo of repos) {
const commits = await repo.commits()
display(repo, commits.last)
}
1)
1)
CachelLayer .beGlobal ()

entering a zone, leaving a zone or throwing an error within the
execution of a zone. The latter callback is most often used to handle
error across an entire thread of asynchronous tasks in a catch-
all fashion. Entering and leaving a zone allows for various tracing
activities, such as measuring the total time spent within a particular
zone or monitoring all dangling asynchronous tasks within a zone.
Particularly these tracing capabilities make zones a reasonable
foundation for our proposed integration of cop with asynchronous
computation as they expose the task scheduling and processing of
the host environment as programmable extension points.

4 MAKING DYNAMIC EXTENT AWARE OF
ASYNCHRONOUS OPERATIONS

This section describes our approach to keep the layer composition
consistent across logically-connected asynchronous operations. To
properly integrate cop with asynchronous execution, we need to
keep track of asynchronous operations and their causal relationship.

In this section we first describe how a layer composition can be
saved for later restoration. Then, we describe a mechanism to relate
a layer composition to a set of logically-connected asynchronous
operations.

A layer composition is the combination of layers activated using
various activation means, such as global activation [2], dynamic ex-
tent [8], or implicit layer activation [14, 18]. While most activation
means depend on the global context of the program, dynamic extent
considers only the local stack as context information. Consider the
extension to our running example in Listing 1: here, we introduce
another layer called CacheLayer. This layer memoizes responses
to requests sent while it was active and answers subsequent re-
quests through a cache if possible to reduce traffic and response
times. However, as the AuthLayer handles sensitive information
about the user, we do not want to cache this information, such as
the access tokens. Thus, we wrap our requests in a withoutLayers
call. When the first request is sent through GitHub.repo() in line 3,
the execution of the remainder of the function is postponed and
awaits its response. Even though the global context of the program
might change in between (e.g., the user activates cache, and thereby
the CacheLayer through a button click), we still want to continue
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{ withLayers: [LO] },

{ withoutLayers: [L1] }, .replay( . ) )
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Figure 2: Replaying a layer stack with two frames (right) onto a layer stack with three frames (left). After calculating the
common ancestry of both stacks (2)), we first remove all additional frames from the current stack and, then, push all additional

frames from the target stack onto the current stack (3).

executing the function without the CacheLayer (dynamic extent
is prioritized over global activation). Thus, our approach has to
ensure that the layer stack for dynamic extent stays consistent
throughout the entirety of the asynchronous operation. In contrast,
global activations happen as a side-effect in response to the global
context of the program. Reverting the globally activated layers to a
former state might have unintended and unexpected consequences.

Implicit layer activation binds the activation status to a boolean
predicate. Reverting those layers to a former state would only intro-
duce a short flickering in the activation state, as the bound predicate
would immediately override the activation status according to its
current state. To summarize, when restoring the execution context
of an asynchronous operation, we just need to replay the layer
stack given by dynamic extent activations and deactivations. The
rest of the layer composition evolves with the program independent
of the frame that is currently executed.

4.1 Layer Stack Reification and Replay

A layer stack is first and foremost a collection of layer stack frames
representing the calls to withLayers and withoutLayers in the cur-
rent call stack. As an example, the code in Listing 1 yields the
following layer stack in line 3:

[
{ withLayers: [AuthLayer] },
{ withoutLayers: [CachelLayer] }

]

While typical cop implementations use a single layer stack, the
integration with asynchronous operations breaks this assumption
by allowing multiple execution paths to overlap and intertwine.
Thus, we need to store the correct layer stack for each asynchronous
operation. This requires us to be able to handle multiple layer stacks
simultaneously and apply the correct one for the currently running

asynchronous operation. Thus, we need to reify the layer stack into
a first-class object.

In particular, we propose two methods for a layer stack to expose,
copy and replay. The copy method creates a new layer stack with
the same frames as the original one. These copies are first-class
objects and, thus, can be used as parameters or return values and
stored like any other value. The replay method takes a target layer
stack as parameter and replaces the frames of the callee with the
ones of the target. As a result, the callee now contains the same
behavior adaptations as the target layer stack.

Replaying a layer stack. While the replay method correctly
adapts the program behavior, simply overriding the frames ne-
glects the life-cycle callbacks of the involved layers. The life-cycle
callbacks onActivate and onDeactivate typically provide proper
setup or teardown for state used by the introduced behavior adap-
tation [9]. It is important to consider that the onActivate callback
should trigger as soon as a layer becomes active from a non-active
state regardless which activation means caused this change (analog
for onDeactivate). To do so, we extend the replay method with
proper callback invocations.

Figure 2 exemplifies our approach for replaying a layer stack with
two frames onto one with three frames (D). First, we determine the
common frame ancestry containing the topmost frames common to
both layer stacks (). To prevent unnecessary layer activations and
deactivations, we keep frames in the common ancestry as is. Next,
all frames below the common ancestry get removed from the current
layer stack starting at the bottom. While removing frames, we emit
onDeactivate (or onActivate)if necessary ((®). Finally, all frames
below the common ancestry in the target stack get pushed onto the
current stack from top to bottom. Analogous to removing frames,
onActivate and onDeactivate callbacks trigger appropriately. As
a result, the current stack now equals the target stack and life-
cycle callbacks were emitted as if the procedure would use ordinary
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withLayers and withoutLayers calls. Assuming no active global
layers for our example in Figure 2, L2 first emits onDeactivate, L1
does not emit onDeactivate because it was not active before, and
finally L3 emit its onActivate.
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Figure 3: Interaction of zones and layer activation when ex-
ecuting the code from Listing 1. Using our asynchronous dy-
namic extent ensures that the correct layer composition is
applied even for asynchronous operations.

4.2 Zone-aware Dynamic Extent

To keep the layer stack consistent throughout the entire execution
of an asynchronous operation we integrate the layer replay mech-
anism with zones. To do so, we replace the ordinary withLayers
function with asynchronous variant withLayersZoned. This vari-
ant runs the given code in a new zone. Thus, every asynchronous
operation scheduled within this code is also executed within this
very zone. We use the life-cycle callbacks of the zone to manipulate
the layer stack so that the given layers are active when running
any code inside this zone. First, we copy the current layer stack
and store the copy in a local variable. Inside the zone’s leave call-
back, we replay the copied layer stack to revert to the state present
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before the call to withLayersZoned. Additionally, we copy the cur-
rent layer stack a second time. This stack represents the layer stack
active within the zone. Therefore we push the given layers as a
new frame onto this stack. We replay this layer stack in the zone's
enter callback. As a result, whenever we enter the zone, the layer
stack with the new frame is active and whenever we leave the zone,
the layer stack is reverted to its previous state. Ultimately, this
mechanism replicates the working principle of withLayers for an
asynchronous execution.

Figure 3 illustrates how our asynchronous dynamic extent pre-
serves the correct layer composition over asynchronous operations
for the example code in Listing 1. withLayers([AuthLayer]) runs
the given block in a new zone (Zone 1). Upon entering Zone 1 the
AuthLayer is pushed onto the layer stack and, thus, activated. Anal-
ogous, withoutLayers([ CacheLayer]) ensures the CacheLayer not
to be active. Consequently, the fetch request in GitHub.repos is
executed with an active AuthLayer but without the CachelLayer.
Reaching the first await expression in line 3 postpones the remain-
der of the given block until receiving a response from the server.
Thus, we leave Zone 2 and Zone 1 (removing frames from the layer
stack accordingly) to resume normal execution of the outer code.
Then line 10 activates the CachelLayer globally. When receiving
the response from the server the execution of the postponed block
continues within the appropriate zones. Upon re-entering Zone 1
the AuthLayer gets activated. Re-entering Zone 2 ensures that the
CacheLayer is inactive, overriding the global activation. Thus, the
for-loop runs with the same context information as the code that
scheduled it.

5 IMPLEMENTATION AS A CONTEXT]S
EXTENSION

This section describes a prototypical implementation of the asyn-
chronous dynamic extent proposed in section 4. Our prototype’ is
written in JavaScript as an extension to ContextJS [12]. Thus, the
extension requires a zone implementation in JavaScript as well.

5.1 Zone Libraries in JavaScript

Zone were originally designed for Dart, a language heavily focused
on describing user interfaces® and, thus, requiring a rich tool set to
deal with asynchronous operations. As zones allow developers to
handle asynchronous tasks more easily, the JavaScript community
quickly picked up zones as another way to deal with increasingly
popular promises and async/await expressions.’

There are several zone libraries available for JavaScript. In the
following we examine two very different zone libraries, zone.js and
Dexie.Promise, for their suitability to integrate with cop.

zone.js. The library zone.js'? originated as part of the JavaScript
front-end framework Angular'!. In context of Angular zones are

"https://github.com/onsetsu/area51 accessed on April 27t 2020

8https://dart.dev/ accessed on May 1%t 2020

%Interestingly, zones themselves were inspired by node.js' now-deprecated domain con-
cept along with thread-local storage (https://dart.dev/articles/archive/zones accessed
on April 20" 2020).
Ohttps://github.com/angular/angular/tree/master/packages/zone.js accessed on May
1% 2020

Uhttps://angular.io/ accessed on 21 April 2020
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used to relate asynchronously scheduled user events with their
dependencies to trigger corresponding view updates.

e zone.js supports various different asynchronous APIs, includ-
ing promises, setTimeout, and event callbacks. However
zone.js does not support native await expressions.

e Zones support typical life-cycle callbacks.

o The library provides a rich set of features, for example for
generating long, asynchronous call stacks.

Dexie.Promise. The IndexedDB'? wrapper Dexie!® includes a zone-
like utility called Dexie.Promise!*. Dexie allows developers to de-
scribe database transactions as a series of asynchronous tasks.
Zones are used to keep track of transaction scopes.

e Dexie.Promise only considers promises and no other asyn-
chronous APIs. However Dexie also supports native await
expressions.

o Dexie.Promise provides no explicit object to represent zones.
Instead zone properties are always attached to a promise.

e Dexie.Promise does not expose life-cycle callbacks.

Comparison. The main disadvantage of zone.js is its inability to
handle native async/await code. The Angular community mitigates
this issue by transpiling asynchronous functions into older versions
of JavaScript maintaining similar functionality. This approach has
two downsides. First, the solution introduces tooling overhead for
the developer by requiring an additional transpilation step. As An-
gular application are typically written in TypeScript the tooling
overhead for compiling to JavaScript is already impaired. However,
for an extension to Context]S this approach would require every
user of the Context]S library to integrate an additional transpilation
step into their workflow. Second, the transpiled code relies on an
emulator to mimic newer language features with ES2015 features.
As a result, the code becomes obfuscated for the Just-in-Time com-
piler and, therefore, is hard to optimize. Both issues suggest that
zone.js is not an optimal solution for our integration, especially
considering future JavaScript versions.

In contrast to zone.js Dexie.Promise supports native await exres-
sions. However Dexie.Promise does not expose any zone life-cycle
callbacks. Yet these callbacks are crucial for our integration ap-
proach to correctly invoke onActivate and onDeactivate call-
backs as described in section 4. From our available options we
chose to use Dexie.Promise as a basis for our Context]S extension
and, thus, need to extend Dexie.Promise with life-cycle callbacks.

5.2 Dexie.Promise Extension

We expose four life-cycle callbacks for zones in Dexie.Promise:
beforeEnter, beforelLeave, afterEnter, and afterLeave. These
callbacks are defined as zone properties:

{

beforeEnter (from, zone) { /x *x/ },
afterLeave(zone, to) { /x ... *x/ }

L2https://www.w3.org/TR/IndexedDB/#idl-def-IDBEnvironment accessed on May 15
2020

Bhttps://dexie.org/ accessed on May 1t 2020
Yhttps://dexie.org/docs/Promise/Promise.PSD accessed on 215 April 2020
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All callbacks receive two parameters: the zone we change from and
the zone we change to. As an example, beforeEnter is invoked
right before switching to the zone on which the callback is defined
while the other zone is still active. To invoke these callbacks, we
extend switchZones, the central function for zone changing in
Dexie.Promise. We call before callbacks after internal micro task
management but before the actual zone switch occurs and after
callbacks after the actual zone switch as well as after disposing
interception hooks.

We only invoke callbacks directly attached to the current zone
and we ignore callbacks defined in parent zones. Additionally call-
backs are also not invoked when switching from a zone to itself.

5.3 Context]S Extension

Before integrating dynamic extent with zone life-cycle callbacks
we should be able to store and replay a layer stack. In Context]S,
the active LayerStack is a central entity for its inner working. The
LayerStack is essentially a collection of layer frames. Each frame
contains the information to either activate or deactivate a set of
layers. Manipulating the LayerStack adapts the layers activated
through dynamic extent.

Layer Stack Reification. To copy the LayerStack, we simply copy
all layer frames it consists. We copy layer frames by shallow copying
with the exception of the withLayers and withoutLayers properties
which are shallow copied individually. The copies can be passed
around like any other JavaScript value.

Replaying a Layer Stack. To replay a layer stack, we apply any
copy onto the active LayerStack. In particular, we first compute
how many frames both layer stacks have in common (starting at the
least significant frame). Second, we pop any additional frame from
the active LayerStack. We remove the most significant frames first
to resemble synchronous unwinding of the LayerStack. And third,
we push the new frames onto the LayerStack. When popping
from and pushing onto the active LayerStack we emit life-cycle
callbacks accordingly as shown in Listing 2 in Appendix A.

5.4 Integrating Layer Activation with Zones

The functions withLayersZoned and withoutLayersZoned execute
a given callback for its asynchronous dynamic extent. Both func-
tions create a new layer frame, then call the withFrameZoned func-
tion as seen in Listing 3 in Appendix A. The withFrameZoned func-
tion directly implements the algorithm described in subsection 4.2.
We create two copies of the active LayerStack, one to return to
later and one to execute the callback in. We push the given layer
frame onto the latter copy. Finally, we run the callback in a new
zone. We attach life-cycle callbacks to manipulate the LayerStack
accordingly: upon entering the zone we apply the copied layer stack
with the additional frame and upon exiting we revert to the for-
mer stack. To replicate the semantics of the original withLayers as
closely as possible, we use af'ter callbacks for replaying the stacks
and, thus, emitting life-cycle callbacks in the zone we switch to.
withLayersZoned is compatible with the behavior of withLayers
for synchronous code.



https://www.w3.org/TR/IndexedDB/#idl-def-IDBEnvironment
https://dexie.org/
https://dexie.org/docs/Promise/Promise.PSD

N Gk W =

COP’20, July 21, 2020, Virtual Event, USA

6 IMPLEMENTING A GITHUB APPLICATION

To check the feasibility of our approach and implementation we
develop the GitHub application used as a running example:

async function displayRepos () {
const repos = await GitHub.repos()
for (let repo of repos) {
const commits = await repo.commits()
display(repo, commits.last)

}

The above function displayRepos first queries GitHub for all repos-
itories of a user. Additionally, the latest commit for each repository
is requested. Finally, each repository is displayed along with infor-
mation on its latest commit.

await displayRepos ()
await withLayers ([AuthLayer], displayRepos)
await withLayersZoned ([ AuthLayer],

displayRepos)

Calling displayRepos without any modifications as in line 1 of the
above code lists the most recently changed repositories of the user
as show in (D in Figure 4. However, these requests only consider
public repositories due to missing authorization.

The AuthLayer represents a behavior adaptation of the appli-
cation to access also private repositories. To do so, the AuthLayer
extends methods of the GitHub and Repository classes to add
an access token to their requests. Activating the AuthLayer using
withLayers as in line 2 applies the desired behavior adaptation
for the duration of the call to displayRepos. However withLayers
only activates the behavior adaptation for the synchronous dynamic
extent of displayRepos: after reaching the first await expression
the function postpones its execution and returns synchronously.
Consequently, the AuthLayer is deactivated and further asynchro-
nous request will not contain an access token, thus, requesting the
latest commit of a private repository fails and needs to be handled
properly as seen in Q) in Figure 4.

In contrast, calling displayRepos through our asynchronous
dynamic extent variant withLayersZoned results in the desired be-
havior: the AuthLayer gets activated for the synchronous extent of
the function call (until the first await expression) as well as every
asynchronous operation scheduled. As a result, all necessary re-
quests are adapted properly and have access to private information,
ultimately, resulting in the list in 3 in Figure 4.

In addition to enabling a layer for any asynchronous opera-
tion logically-connected to an initial function, withLayersZoned
ensures that the layers are inactive outside of its zone. This mecha-
nism even allows to interleave multiple calls to displayRepos with
different activation means, for example running all three calls of
displayRepos inline 1 to 3 concurrently without accidentally leak-
ing the access token.

7 RELATED WORK

Thread-local layer activation is a feature supported by various cop
implementations [2], including ContextS [6] and ContextJ [3]. In
those implementations, the thread-local storage serves a similar role
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Figure 4: Results of executing the displayRepos function
with different behavior variations.

as zones in our approach. The concept of thread-local storages even
was an influence in the design of zones!’. However, while thread-
local activations prevent layers from leaking to other threads, our
approach maintains the consistency of a layer stack across logically-
connected asynchronous operations within a single thread.

JCop [4] heavily emphasizes context-dependent behavior on
event handlers, another incarnation of asynchronous programming.
As with scheduled asynchronous code, event handlers are typically
not entered at a specific fixed point in the control flow but exist
independent of the main control flow. Thus, JCop allows developers
to activate layers for the dynamic extent of an event handler call
through the usage of Aspect-oriented Programming [11]. Activat-
ing a layer this way is similar to our layer replay mechanism on
an asynchronous operation. However, JCOP requires its users to
specify which layer composition to activate and to explicitly state
which methods (or control flow entry points) should receive that
layer composition. In contrast, our approach implicitly replicates
a layer stack for an event handler equivalent to the one that han-
dler was defined in. An important distinction between JCop and
our approach is that JCop only supports dynamic extent and, thus,
needs to model any context in this manner. Our approach easily
allows dynamic extent to interact with other activation means.

An application of JCop in the domain of Service-oriented Archi-
tecture closely resembles our approach of layer stack reification
in order to preserve context between different services [1]. When
calling a SOAP message to a remote service the current layer com-
position in the client is accessed through JCop‘s reflection APIL.
The layer composition is then enveloped into the message call as
a context description. The server de-envelopes the description and
activates the corresponding layers to handle the request in the same
context as the client. Enveloping and de-enveloping layers is very
similar to storing and replaying a layer stack in our approach when
scheduling and resuming asynchronous operations. However, while
our approach handles context preservation implicitly, JCop requires
explicit enveloping of the layer composition.

Similar to JCop, EventC]J [9] is another Java-based cop imple-
mentation that supports event-based layer activation. In contrast to
JCop, EventC]J allows developers to activate layers in an instance-
specific manner. While our approach does not bind layer activation

15https://dart.dev/articleS/archive/zones accessed on June 24th 2020
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to a specific instance, we bind a layer stack to a particular set of
asynchronous operations, allowing a single instance to have differ-
ent layer compositions within different asynchronous operations.

8 FUTURE WORK

While the integration of dynamic extent with asynchronous oper-
ations represents a useful iteration on the cor paradigm, we expect
to continue improving this integration further. In particular, this
work can be extended in two directions:

o Extending the integration with asynchronous operations to
other meta programming concepts, such as Active Expres-
sions [13] and Babylonian Programming [15, 16].

o Applying the concept of replaying behavior adaptations to
a more general approach to control, postpone, and resume
execution. For example how to generalize async/await-style
asynchronous execution and continuations on coroutines?

9 CONCLUSION

In this paper we proposed zone-based layer activation, a variant of
the dynamic extent activation means that activates a layer for the
entire duration of a message send, including all logically-connected
asynchronous operations. To do so, we capture the layer stack
when defining the dynamic extent and replay that layer stack
whenever a connected asynchronous operation gets executed. To
track asynchronous operations we use zones, a concept from asyn-
chronous programming languages to provide a persistent context
across logically-connected asynchronous operations. Because our
approach is based on zones it is applicable to all languages sup-
porting a zone concept as part of their language definition or as a
library, such as Dart. We provide a prototypical implementation of
our approach in JavaScript as a Context]S extension that integrates
with the zone library Dexie.Promise.
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The following listings are excerpts from our Context]S extension
as described in section 5.
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Listing 2: Pushing a frame onto the active LayerStack. Life-
cycle callbacks need to be handled when pushing onto this
stack. Popping a frame from the LayerStack works analo-
gously.

1 function pushFrame(frame) {

2 const { withLayers, withoutLayers } =

frame
3
4 const beforePush = currentLayers()
5
6 LayerStack.push(frame)
7
8 withLayers && withLayers
9 .filter(1 => !beforePush.includes(1l))
10 .forEach(l => 1l.emit('activate'))
11 withoutLayers && withoutLayers
12 .filter(l1 => beforePush.includes(l))
13 .forEach(l => 1l.emit('deactivate'))

Stefan Ramson, Jens Lincke, Harumi Watanabe, and Robert Hirschfeld

Listing 3: The withFrameZoned function runs a callback in
a new zone. Zone life-cycle callbacks ensure that the all
logically-connected asynchronous operation run within the
dynamic extent. Error handling is omitted for brevery.
1 function withFrameZoned(frame, callback) {
2 const layerStackToRevertTo =
storeLayerStack ()

3 const zonedLayerStack = storelLayerStack()
4 zonedLayerStack.push(frame)

5

6 return withZone(callback, {

7 afterEnter () {

8 replaylLayerStack (zonedLayerStack)

9 |

10 afterLeave () {

11 replayLayerStack(layerStackToRevertTo)
12 }

13}

14 }
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