
Compatibility Layers for Interface Mediation at Run-Time

Patrick Rein Robert Hirschfeld Stefan Lehmann Jens Lincke

Hasso Plattner Institute
University of Potsdam

Potsdam, Germany

{firstname}.{lastname}@hpi.uni-potsdam.de

Abstract

In adaptable systems, one module might require an interface from
another module which the second module does not provide. For
some cases, the particular provider module and its interface which
will be available at run-time can not be anticipated during devel-
opment time. In such situations with various provider interfaces,
current mitigation strategies for interface mismatches struggle as
they often rely on advanced knowledge about one particular pro-
viding module. Therefore, we propose the concept of compatibility
layers which is based on modular interface mappings. These map-
pings are applied to adapt the provided interface at run-time. Each
mapping contains a set of general requirements for the provided
interface and a set of derived functions based on the required fea-
tures. We have implemented the concept of compatibility layers in
a Squeak/Smalltalk prototype based on context-oriented program-
ming. Based on this prototype, we discuss the resulting trade-offs
and illustrate exemplary interface mismatches in Squeak/Smalltalk
which could be mediated by the prototype.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: Modules and interfaces

Keywords interfaces, modules, interface compatibility, dynamic
adaptation, context-oriented programming

1. Introduction

In open systems, situations might arise in which a client module
requires an interface from a provider module, which the provider
module does not support. If the provider module does not represent
the semantically correct resource, then there is an error in the
system design as the client has got a provider which it can not
use. If however, the provider matches semantically and only the
interface does not match the expected ones, a system failure would
be unnecessary. This could for example occur when an object does
represent the required resource but does not exhibit the expected
set of methods.

This situation can arise if there are numerous different execu-
tion environments for the module under development. For example,
developers of JavaScript libraries regularly face this issue. Their li-
brary might be used in various browsers and different browser ver-
sions which provide different JavaScript standard library interfaces.

Provider P

supports interface J
Client C

requires interface R

Environment E

installs/uses

Figure 1. An illustration of the issue compatibility layers address.
A client module C requires an interface R from a provider module
P which in turn support interface J which is not compatible with R.
Additionally, the module P and the interface J it provides is only
known at run-time.

In such cases, where the number of potential provider modules is
large and might change often, it becomes difficult for the developer
of a client module to anticipate the available interfaces of provider
modules at development time.

To improve the stability of a system in such situations, sev-
eral mechanisms have been proposed which temporarily adapt the
provided interface to match the required interface. Among these
concepts are aspect-oriented programming (AOP) [13], context-
oriented programming (COP) [9], or design patterns of object-
oriented programming [7] like the adapter pattern. When using
some implementations of these approaches, the developer uses
knowledge about the provided interface to design the mapping. For
example, the adapter pattern is designed to adapt one particular in-
terface and is explicitly inserted between the client and the provider.
In ordinary use-cases of context-oriented programming in object-
oriented environments, the developer specifies the adapted class in
advance.

This knowledge about the interfaces might not be available in
settings in which the set of modules and their combinations are
only known at run-time. In an object-oriented class-based system,
this would be a situation in which we want to send a message to an
object whose class or super-classes we do not know at development
time. Thus, we propose compatibility layers, an approach to enable
the run-time adaptation of provided interfaces which are unknown
during development. It is based on the idea of interface mappings,
which include a set of requirements on the provided interface and
a set of derived functions, defined in terms of the required inter-
face. These mappings are used in a context where compatibility is
required to dynamically map the interface of incoming objects to
the locally required interface. This approach is independent of any
modularity concepts used to implement the interface extension.

1.1 Contributions

• The description of the compatibility layers concept to estab-
lish compatibility between interfaces of objects for scenarios in

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
ACM. 978-1-4503-4033-5/16/03...
http://dx.doi.org/10.1145/2892664.2892683

113



algorithm can not deduct combinations of mappings to construct
a specific interface.

Additionally, whenever a mapping is applied, all derived meth-
ods are installed. This might be desirable as this creates coherent
interfaces in cases where the derived methods should be used in
combination. At the same time, this might override existing imple-
mentations of methods which already had the correct behavior.

5.2 Applicability to Squeak/Smalltalk

After implementing compatibility layers, we used the resulting
mappings to determine potential exemplary interface mismatches
in the Squeak standard library of Squeak version 5.0. Then, we
have implemented five exemplary mappings and evaluated which
classes could be extended by them. The number of mappings is not
sufficient for a quantitative analysis. However, we have found some
incomplete interfaces which are worth noting:

• The classes String and Point implement the comparison method
<= but do not provide the derived method between:and:.

• The class Path and its subclasses, which represent geometrical
figures expressed through points, implement at : , size , and even
select : but do not implement collect or reject : .

• The PipeJunction from the CommandShell package and the
ImageReadWriter classes both implement the basic streaming
protocol next and next : but do not provide streaming into a
buffer with next : into :

Although they illustrate the nature of such interface incom-
patibilities, these examples could be solved at development time
in Squeak/Smalltalk. As the complete Squeak standard library is
available to developers, these mismatches can be mitigated by
adding the methods to the base system. This might not be possi-
ble in other environments and standard libraries.

Additionally, the missing methods are a result of the reuse
mechanism of Squeak which is single-inheritance. By using side-
ways composition mechanisms, for example MixIns [3], these is-
sues might be mitigated.

5.3 Correctness of Method Calls

The interface mappings can cause issues when a provider does se-
mantically not represent the required resource but does still fulfill
the requirements to apply an interface mapping. In our prototypical
implementation this might happen for example, when a Dictionary
is used in place of a Collection . Smalltalk Dictionaries do un-
derstand at : and size which might be the requirements to imple-
ment the basic collection protocol methods like mapping or filter-
ing. However, the interface only matches on the syntactical level as
the Dictionary>>#at: method does actually accept keys of arbi-
trary type. This issue occurred in our prototype as the requirements
are on the syntactical level and thus not strict enough.

Another issue which arose in the prototype are the return values
of methods. Although, the derived functionality might transform
the original return value before returning it, our mappings do not
encode any requirements on the original return values. Stricter
interface requirements might achieve this.

There might be a trade-off at this point between the strictness
of the requirements to guarantee correctness and the flexibility of a
mapping regarding the modules it can be applied on.

5.4 Impact on Adaptability

Generally, the concept of compatibility layers seems to allow more
flexible combinations of modules. As the compatibility layer can
also be activated in the surrounding environment E, it does not
require any compatibility logic in the client C.

While the mappings introduce the risk of incorrect interface
semantics, they also allow modules to be used in environments
with previously unknown provided or required interfaces. This
makes them suitable for scenarios in which the developer can not
anticipate how and in which environments a client or provider
module will be used.

6. Related Work

6.1 Call-By-Meaning

The call-by-meaning approach solves the interface mismatch issue
by coupling client and provider only through a query for a suitable
function [18]. The client code includes a query for a function which
describes the requirements in natural language. The provider mod-
ules on the other hand describe their functions with extensive docu-
mentation, also written in natural language. To find a suitable match
for the query in the client the approach uses a constraint solver.
The facts the constraint solver works on have previously been ex-
tracted from the documentation strings using natural language pro-
cessing techniques. Thus, the mapping between client and provider
modules is solely implemented on the basis of general interface re-
quirements. While solving syntactic interface mismatches, this also
solves semantic mismatches. Although it is a very general solution,
its implementation also requires a fundamentally different way of
designing systems around facts instead of components.

6.2 Shims

Shims are a concept which is used to achieve compatibility be-
tween different versions of execution environments. Two noteable
examples are the ECMAScript shims for the compatibility between
JavaScript versions and the Microsoft Windows shims for compat-
ibility between operating system APIs.

Both approaches do introduce a mapping from one interface to
another. However, both implementations contain very static map-
pings. They replace or extend one particular function of a previ-
ously known class or object in the system. These shims can not
react on an object which provides the required functionality but has
a previously unknown type.

6.3 Data, Context and Interaction (DCI)

The data, context and interaction (DCI) paradigm uses a mecha-
nism similar to mappings, but differs in its goals [17]. In the DCI
paradigm there is data which represents the existing domain ob-
jects. These are selected with object queries and dynamically aug-
mented with specific behavior (interactions) in a specific context.
This means that an object gets to play a certain role in a context.
For example, a crossing might play the role of a vertex and a street
the role of an edge in a graph algorithm.

The matching of data entities and the augmentation of the entity
does match the concept of a mapping. Further, the idea of a context
matches the scoping mechanism in our approach.

However, both approaches differ in their targeted challenge. Our
approach focuses on the practical issue of interface mismatches
in object-oriented systems. In contrast, the DCI paradigm aims to
change the way we perceive object-oriented systems in general,
which might, as a side-effect, also render the interface mismatch
issue obsolete.

Role-based Programming Role-based programming [8, 15] is
similar to the DCI paradigm and our approach. It also includes
the concepts of an extension of the behavior of an object in a
particular context. Role-based programming can be used as one
implementation strategy for the concept of compatibility layers.
Whether a particular role-based programming implementation is
suitable, depends on the flexibility of the requirements one can
define for the selection of objects to augment with a role.

114



algorithm can not deduct combinations of mappings to construct
a specific interface.

Additionally, whenever a mapping is applied, all derived meth-
ods are installed. This might be desirable as this creates coherent
interfaces in cases where the derived methods should be used in
combination. At the same time, this might override existing imple-
mentations of methods which already had the correct behavior.

5.2 Applicability to Squeak/Smalltalk

After implementing compatibility layers, we used the resulting
mappings to determine potential exemplary interface mismatches
in the Squeak standard library of Squeak version 5.0. Then, we
have implemented five exemplary mappings and evaluated which
classes could be extended by them. The number of mappings is not
sufficient for a quantitative analysis. However, we have found some
incomplete interfaces which are worth noting:

� The classes String and Point implement the comparison method
< = but do not provide the derived method between:and:.

� The class Path and its subclasses, which represent geometrical
figures expressed through points, implement at : , size , and even
select : but do not implement collect or reject : .

� The PipeJunction from the CommandShell package and the
ImageReadWriter classes both implement the basic streaming
protocol next and next : but do not provide streaming into a
buffer with next : into :

Although they illustrate the nature of such interface incom-
patibilities, these examples could be solved at development time
in Squeak/Smalltalk. As the complete Squeak standard library is
available to developers, these mismatches can be mitigated by
adding the methods to the base system. This might not be possi-
ble in other environments and standard libraries.

Additionally, the missing methods are a result of the reuse
mechanism of Squeak which is single-inheritance. By using side-
ways composition mechanisms, for example MixIns [3], these is-
sues might be mitigated.

5.3 Correctness of Method Calls

The interface mappings can cause issues when a provider does se-
mantically not represent the required resource but does still fulfill
the requirements to apply an interface mapping. In our prototypical
implementation this might happen for example, when a Dictionary
is used in place of a Collection . Smalltalk Dictionaries do un-
derstand at : and size which might be the requirements to imple-
ment the basic collection protocol methods like mapping or filter-
ing. However, the interface only matches on the syntactical level as
the Dictionary>> #at: method does actually accept keys of arbi-
trary type. This issue occurred in our prototype as the requirements
are on the syntactical level and thus not strict enough.

Another issue which arose in the prototype are the return values
of methods. Although, the derived functionality might transform
the original return value before returning it, our mappings do not
encode any requirements on the original return values. Stricter
interface requirements might achieve this.

There might be a trade-off at this point between the strictness
of the requirements to guarantee correctness and the flexibility of a
mapping regarding the modules it can be applied on.

5.4 Impact on Adaptability

Generally, the concept of compatibility layers seems to allow more
flexible combinations of modules. As the compatibility layer can
also be activated in the surrounding environment E, it does not
require any compatibility logic in the client C.

While the mappings introduce the risk of incorrect interface
semantics, they also allow modules to be used in environments
with previously unknown provided or required interfaces. This
makes them suitable for scenarios in which the developer can not
anticipate how and in which environments a client or provider
module will be used.

6. Related Work

6.1 Call-By-Meaning

The call-by-meaning approach solves the interface mismatch issue
by coupling client and provider only through a query for a suitable
function [18]. The client code includes a query for a function which
describes the requirements in natural language. The provider mod-
ules on the other hand describe their functions with extensive docu-
mentation, also written in natural language. To find a suitable match
for the query in the client the approach uses a constraint solver.
The facts the constraint solver works on have previously been ex-
tracted from the documentation strings using natural language pro-
cessing techniques. Thus, the mapping between client and provider
modules is solely implemented on the basis of general interface re-
quirements. While solving syntactic interface mismatches, this also
solves semantic mismatches. Although it is a very general solution,
its implementation also requires a fundamentally different way of
designing systems around facts instead of components.

6.2 Shims

Shims are a concept which is used to achieve compatibility be-
tween different versions of execution environments. Two noteable
examples are the ECMAScript shims for the compatibility between
JavaScript versions and the Microsoft Windows shims for compat-
ibility between operating system APIs.

Both approaches do introduce a mapping from one interface to
another. However, both implementations contain very static map-
pings. They replace or extend one particular function of a previ-
ously known class or object in the system. These shims can not
react on an object which provides the required functionality but has
a previously unknown type.

6.3 Data, Context and Interaction (DCI)

The data, context and interaction (DCI) paradigm uses a mecha-
nism similar to mappings, but differs in its goals [17]. In the DCI
paradigm there is data which represents the existing domain ob-
jects. These are selected with object queries and dynamically aug-
mented with specific behavior (interactions) in a specific context.
This means that an object gets to play a certain role in a context.
For example, a crossing might play the role of a vertex and a street
the role of an edge in a graph algorithm.

The matching of data entities and the augmentation of the entity
does match the concept of a mapping. Further, the idea of a context
matches the scoping mechanism in our approach.

However, both approaches differ in their targeted challenge. Our
approach focuses on the practical issue of interface mismatches
in object-oriented systems. In contrast, the DCI paradigm aims to
change the way we perceive object-oriented systems in general,
which might, as a side-effect, also render the interface mismatch
issue obsolete.

Role-based Programming Role-based programming [8, 15] is
similar to the DCI paradigm and our approach. It also includes
the concepts of an extension of the behavior of an object in a
particular context. Role-based programming can be used as one
implementation strategy for the concept of compatibility layers.
Whether a particular role-based programming implementation is
suitable, depends on the flexibility of the requirements one can
define for the selection of objects to augment with a role.

115



algorithm can not deduct combinations of mappings to construct
a specific interface.

Additionally, whenever a mapping is applied, all derived meth-
ods are installed. This might be desirable as this creates coherent
interfaces in cases where the derived methods should be used in
combination. At the same time, this might override existing imple-
mentations of methods which already had the correct behavior.

5.2 Applicability to Squeak/Smalltalk

After implementing compatibility layers, we used the resulting
mappings to determine potential exemplary interface mismatches
in the Squeak standard library of Squeak version 5.0. Then, we
have implemented five exemplary mappings and evaluated which
classes could be extended by them. The number of mappings is not
sufficient for a quantitative analysis. However, we have found some
incomplete interfaces which are worth noting:

� The classes String and Point implement the comparison method
<= but do not provide the derived method between:and:.

� The class Path and its subclasses, which represent geometrical
figures expressed through points, implement at : , size , and even
select : but do not implement collect or reject : .

� The PipeJunction from the CommandShell package and the
ImageReadWriter classes both implement the basic streaming
protocol next and next : but do not provide streaming into a
buffer with next : into :

Although they illustrate the nature of such interface incom-
patibilities, these examples could be solved at development time
in Squeak/Smalltalk. As the complete Squeak standard library is
available to developers, these mismatches can be mitigated by
adding the methods to the base system. This might not be possi-
ble in other environments and standard libraries.

Additionally, the missing methods are a result of the reuse
mechanism of Squeak which is single-inheritance. By using side-
ways composition mechanisms, for example MixIns [3], these is-
sues might be mitigated.

5.3 Correctness of Method Calls

The interface mappings can cause issues when a provider does se-
mantically not represent the required resource but does still fulfill
the requirements to apply an interface mapping. In our prototypical
implementation this might happen for example, when a Dictionary
is used in place of a Collection . Smalltalk Dictionaries do un-
derstand at : and size which might be the requirements to imple-
ment the basic collection protocol methods like mapping or filter-
ing. However, the interface only matches on the syntactical level as
the Dictionary>>#at: method does actually accept keys of arbi-
trary type. This issue occurred in our prototype as the requirements
are on the syntactical level and thus not strict enough.

Another issue which arose in the prototype are the return values
of methods. Although, the derived functionality might transform
the original return value before returning it, our mappings do not
encode any requirements on the original return values. Stricter
interface requirements might achieve this.

There might be a trade-off at this point between the strictness
of the requirements to guarantee correctness and the flexibility of a
mapping regarding the modules it can be applied on.

5.4 Impact on Adaptability

Generally, the concept of compatibility layers seems to allow more
flexible combinations of modules. As the compatibility layer can
also be activated in the surrounding environment E, it does not
require any compatibility logic in the client C.

While the mappings introduce the risk of incorrect interface
semantics, they also allow modules to be used in environments
with previously unknown provided or required interfaces. This
makes them suitable for scenarios in which the developer can not
anticipate how and in which environments a client or provider
module will be used.

6. Related Work

6.1 Call-By-Meaning

The call-by-meaning approach solves the interface mismatch issue
by coupling client and provider only through a query for a suitable
function [18]. The client code includes a query for a function which
describes the requirements in natural language. The provider mod-
ules on the other hand describe their functions with extensive docu-
mentation, also written in natural language. To find a suitable match
for the query in the client the approach uses a constraint solver.
The facts the constraint solver works on have previously been ex-
tracted from the documentation strings using natural language pro-
cessing techniques. Thus, the mapping between client and provider
modules is solely implemented on the basis of general interface re-
quirements. While solving syntactic interface mismatches, this also
solves semantic mismatches. Although it is a very general solution,
its implementation also requires a fundamentally different way of
designing systems around facts instead of components.

6.2 Shims

Shims are a concept which is used to achieve compatibility be-
tween different versions of execution environments. Two noteable
examples are the ECMAScript shims for the compatibility between
JavaScript versions and the Microsoft Windows shims for compat-
ibility between operating system APIs.

Both approaches do introduce a mapping from one interface to
another. However, both implementations contain very static map-
pings. They replace or extend one particular function of a previ-
ously known class or object in the system. These shims can not
react on an object which provides the required functionality but has
a previously unknown type.

6.3 Data, Context and Interaction (DCI)

The data, context and interaction (DCI) paradigm uses a mecha-
nism similar to mappings, but differs in its goals [17]. In the DCI
paradigm there is data which represents the existing domain ob-
jects. These are selected with object queries and dynamically aug-
mented with specific behavior (interactions) in a specific context.
This means that an object gets to play a certain role in a context.
For example, a crossing might play the role of a vertex and a street
the role of an edge in a graph algorithm.

The matching of data entities and the augmentation of the entity
does match the concept of a mapping. Further, the idea of a context
matches the scoping mechanism in our approach.

However, both approaches differ in their targeted challenge. Our
approach focuses on the practical issue of interface mismatches
in object-oriented systems. In contrast, the DCI paradigm aims to
change the way we perceive object-oriented systems in general,
which might, as a side-effect, also render the interface mismatch
issue obsolete.

Role-based Programming Role-based programming [8, 15] is
similar to the DCI paradigm and our approach. It also includes
the concepts of an extension of the behavior of an object in a
particular context. Role-based programming can be used as one
implementation strategy for the concept of compatibility layers.
Whether a particular role-based programming implementation is
suitable, depends on the flexibility of the requirements one can
define for the selection of objects to augment with a role.

116



algorithm can not deduct combinations of mappings to construct
a specific interface.

Additionally, whenever a mapping is applied, all derived meth-
ods are installed. This might be desirable as this creates coherent
interfaces in cases where the derived methods should be used in
combination. At the same time, this might override existing imple-
mentations of methods which already had the correct behavior.

5.2 Applicability to Squeak/Smalltalk

After implementing compatibility layers, we used the resulting
mappings to determine potential exemplary interface mismatches
in the Squeak standard library of Squeak version 5.0. Then, we
have implemented five exemplary mappings and evaluated which
classes could be extended by them. The number of mappings is not
sufficient for a quantitative analysis. However, we have found some
incomplete interfaces which are worth noting:

• The classes String and Point implement the comparison method
<= but do not provide the derived method between:and:.

• The class Path and its subclasses, which represent geometrical
figures expressed through points, implement at : , size , and even
select : but do not implement collect or reject : .

• The PipeJunction from the CommandShell package and the
ImageReadWriter classes both implement the basic streaming
protocol next and next : but do not provide streaming into a
buffer with next : into :

Although they illustrate the nature of such interface incom-
patibilities, these examples could be solved at development time
in Squeak/Smalltalk. As the complete Squeak standard library is
available to developers, these mismatches can be mitigated by
adding the methods to the base system. This might not be possi-
ble in other environments and standard libraries.

Additionally, the missing methods are a result of the reuse
mechanism of Squeak which is single-inheritance. By using side-
ways composition mechanisms, for example MixIns [3], these is-
sues might be mitigated.

5.3 Correctness of Method Calls

The interface mappings can cause issues when a provider does se-
mantically not represent the required resource but does still fulfill
the requirements to apply an interface mapping. In our prototypical
implementation this might happen for example, when a Dictionary
is used in place of a Collection . Smalltalk Dictionaries do un-
derstand at : and size which might be the requirements to imple-
ment the basic collection protocol methods like mapping or filter-
ing. However, the interface only matches on the syntactical level as
the Dictionary>>#at: method does actually accept keys of arbi-
trary type. This issue occurred in our prototype as the requirements
are on the syntactical level and thus not strict enough.

Another issue which arose in the prototype are the return values
of methods. Although, the derived functionality might transform
the original return value before returning it, our mappings do not
encode any requirements on the original return values. Stricter
interface requirements might achieve this.

There might be a trade-off at this point between the strictness
of the requirements to guarantee correctness and the flexibility of a
mapping regarding the modules it can be applied on.

5.4 Impact on Adaptability

Generally, the concept of compatibility layers seems to allow more
flexible combinations of modules. As the compatibility layer can
also be activated in the surrounding environment E, it does not
require any compatibility logic in the client C.

While the mappings introduce the risk of incorrect interface
semantics, they also allow modules to be used in environments
with previously unknown provided or required interfaces. This
makes them suitable for scenarios in which the developer can not
anticipate how and in which environments a client or provider
module will be used.

6. Related Work

6.1 Call-By-Meaning

The call-by-meaning approach solves the interface mismatch issue
by coupling client and provider only through a query for a suitable
function [18]. The client code includes a query for a function which
describes the requirements in natural language. The provider mod-
ules on the other hand describe their functions with extensive docu-
mentation, also written in natural language. To find a suitable match
for the query in the client the approach uses a constraint solver.
The facts the constraint solver works on have previously been ex-
tracted from the documentation strings using natural language pro-
cessing techniques. Thus, the mapping between client and provider
modules is solely implemented on the basis of general interface re-
quirements. While solving syntactic interface mismatches, this also
solves semantic mismatches. Although it is a very general solution,
its implementation also requires a fundamentally different way of
designing systems around facts instead of components.

6.2 Shims

Shims are a concept which is used to achieve compatibility be-
tween different versions of execution environments. Two noteable
examples are the ECMAScript shims for the compatibility between
JavaScript versions and the Microsoft Windows shims for compat-
ibility between operating system APIs.

Both approaches do introduce a mapping from one interface to
another. However, both implementations contain very static map-
pings. They replace or extend one particular function of a previ-
ously known class or object in the system. These shims can not
react on an object which provides the required functionality but has
a previously unknown type.

6.3 Data, Context and Interaction (DCI)

The data, context and interaction (DCI) paradigm uses a mecha-
nism similar to mappings, but differs in its goals [17]. In the DCI
paradigm there is data which represents the existing domain ob-
jects. These are selected with object queries and dynamically aug-
mented with specific behavior (interactions) in a specific context.
This means that an object gets to play a certain role in a context.
For example, a crossing might play the role of a vertex and a street
the role of an edge in a graph algorithm.

The matching of data entities and the augmentation of the entity
does match the concept of a mapping. Further, the idea of a context
matches the scoping mechanism in our approach.

However, both approaches differ in their targeted challenge. Our
approach focuses on the practical issue of interface mismatches
in object-oriented systems. In contrast, the DCI paradigm aims to
change the way we perceive object-oriented systems in general,
which might, as a side-effect, also render the interface mismatch
issue obsolete.

Role-based Programming Role-based programming [8, 15] is
similar to the DCI paradigm and our approach. It also includes
the concepts of an extension of the behavior of an object in a
particular context. Role-based programming can be used as one
implementation strategy for the concept of compatibility layers.
Whether a particular role-based programming implementation is
suitable, depends on the flexibility of the requirements one can
define for the selection of objects to augment with a role.

117



7. Future Work

7.1 Evaluation on Productive Systems

To finally determine whether this concept can solve interface mis-
matches appearing in practice, a more extensive evaluation is re-
quired. One study might be to test to which extent compatibility
layers allow Smalltalk developers to use Smalltalk libraries origi-
nating from another Smalltalk environment. To determine how well
unanticipated interfaces can be adapted, we would first implement a
set of mappings based on the differences between the environment
A providing the libraries and the environment B in which they will
be used. In this scenarios the libraries play the role of the client
C which requires interfaces from the standard library which is the
provider P. Only after implementing the mappings, we would se-
lect a number of libraries which were implemented in the environ-
ment A. We would then try to execute the corresponding test suites
with and without compatibility layers and we could measure the
improvement in succeeded test cases.

7.2 Mapping Varieties

From the perspective of an implementation, it might be interesting
to explore further possibilities for expressing mappings.

First of all, it might be beneficial to investigate how a more pow-
erful requirements definition mechanism, for example a pointcut
language, influences the capabilities of the mappings. Further, the
algorithm for determining suitable combinations of mappings to
mediate to interfaces could be extended. Especially, an algorithm
to construct combinations of mappings to get the right interface
would be interesting.

Additionally, there is the open challenge of a consistent inter-
face mediation during an interaction between two objects. If the
client starts an interaction with a provider through a mediated in-
terface, subsequent calls to the provider might need to be mediated
through the same interfaces. For example, if one derived method
from a mapping allocates a resource the corresponding derived
method for releasing the resource needs to be applied too and stay
active for the rest of the interaction.

Applicability to Structural Incompatibilities Another open chal-
lenge is the issue of structural interface mismatches. The interface
might not only consist of methods or functions but also of specific
types or groups of objects. Conceptually, the model of compatibil-
ity layers allows for such situations. However, it is yet unclear how
to describe a mapping for such incompatibilities.

7.3 Interface Mappings as Modules

Interesting effects might arise from a system which uses the con-
cept of interface mappings as its primary module system. The trade-
off between correctness and adaptability discussed in section 5
would become central in such a system. Other interesting aspect
would be the impact of a scoping mechanism and differences to
role-based programming systems.

7.4 Tool Support

Finally, the mappings might also create new opportunities for tool
support. The mappings could be used to suggest new interfaces to a
developer. For example, a tool might constantly check whether any
mapping can already be applied to a class under development. If
that is the case, the tool can suggest the mapping to the developer,
who might choose to integrate the derived methods permanently
into the class.

8. Conclusion

We have illustrated the issues involved in mitigating interface mis-
matches in situations in which the actual provider available at run-

time can not be anticipated. These issues included the entanglement
of client and compatibility logic and the scoping of the adaptation
of provider interfaces. As a consequence, we proposed the concept
of compatibility layers, which dynamically apply mappings from
one interface to another in a limited scope. We illustrated one way
to implement this concept with an implementation in Squeak/S-
malltalk. Based on the prototype and the conceptual description,
we discussed the resulting trade-off between correctness and adapt-
ability. However, it remains to be shown, whether this concept can
solve interface mismatches on a larger scale. In total, compatibil-
ity layers might be a concept to improve the modularization of in-
teractions of components in systems in which components are ex-
changed dynamically.

References

[1] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A Minimal Module
Model Supporting Local Rebinding. In Proceedings of Joint Modular

Languages Conference JMLC03, volume 2789 of Lecture Notes in

Computer Science, pages 122–131. Springer Berlin Heidelberg, 2003.

[2] A. P. Black, O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo by

example. Square Bracket Associates, 2010.

[3] G. Bracha and W. Cook. Mixin-based inheritance. ACM Sigplan

Notices, 25(10):303–311, 1990.

[4] P. Butterworth, A. Otis, and J. Stein. The gemstone object database
management system. Communications of the ACM, 34(10):64–77,
1991.

[5] S. Conder and L. Darcey. Android Wireless Application Development.
Addison Wesley, Upper Saddle River, NJ, 2nd revised edition. edition
edition, Dec. 2010. ISBN 978-0-321-74301-5.

[6] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and
S. Drossopoulou. Session types for object-oriented languages.
In Proceedings of ECOOP 2006, Nantes, France, July 3-7, 2006,

Proceedings, pages 328–352, 2006.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Pearson Education,
1994.

[8] S. Herrmann. Object teams: Improving modularity for crosscutting
collaborations. In Objects, Components, Architectures, Services, and

Applications for a Networked World, pages 248–264. Springer, 2003.

[9] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-Oriented Pro-
gramming. Journal of Object Technology, 7(3):125–151, 2008.

[10] K. Honda. Types for dyadic interaction. In CONCUR 1993, pages
509–523. Springer, 1993.

[11] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to
the future: The story of Squeak, a practical Smalltalk written in itself.
In ACM SIGPLAN Notices, volume 32, pages 318–326. ACM, 1997.

[12] T. Kaehler. Squeak wiki: Method finder. http://wiki.squeak.
org/squeak/1916 (accessed 12 January 2016).

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In Proceedings

of ECOOP 1997, pages 220–242, 1997.

[14] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld. An open
implementation for context-oriented layer composition in contextjs.
Science of Computer Programming, 76(12):1194 – 1209, 2011.

[15] M. Mezini and K. Ostermann. Conquering aspects with caesar. In
Proceedings of the 2nd international conference on Aspect-oriented

software development, pages 90–99. ACM, 2003.

[16] S. Powers. JavaScript Cookbook. O’Reilly Media, Inc., 2015.

[17] T. Reenskaug. The common sense of object oriented programming.
Department of Informatics, University of Oslo, Oslo, Norway, 2009.

[18] H. Samimi, C. Deaton, Y. Ohshima, A. Warth, and T. D. Millstein.
Call by meaning. In Proceedings of Onward! 2014, part of SLASH

’14, Portland, OR, USA, October 20-24, 2014, pages 11–28, 2014.

118


