
Living in Your Programming Environment
Towards an Environment for Exploratory Adaptations of Productivity Tools

Patrick Rein
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Jens Lincke
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

jens.lincke@hpi.uni-potsdam.de

Stefan Ramson
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

stefan.ramson@hpi.uni-potsdam.de

Toni Mattis
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

toni.mattis@hpi.uni-potsdam.de

Robert Hirschfeld
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

Abstract
Knowledge workers can benefit from adaptable software
tools as they often have individual work flows adapted to
their circumstances. To react directly to new use cases, users
should be able to adapt the tools while using them and get
immediate feedback on their adaptation. Exploratory pro-
gramming environments already support such an explora-
tory style for developing software, however they are not
used for everyday productivity tasks. In this paper, we des-
cribe our first steps towards an exploratory programming
environment suitable for everyday productivity tasks. From
our experiences of using the environment for eight months,
we distilled features which improve adaptability and pro-
ductivity of such environments.

CCS Concepts • Software and its engineering → Inte-
grated and visual development environments;

Keywords exploratory programming, live programming,
productivity tools, programming environment, desktop en-
vironment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PX/17.2, October 22, 2017, Vancouver, BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5522-3/17/10. . . $15.00
https://doi.org/10.1145/3167108

ACM Reference Format:
Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, and Robert
Hirschfeld. 2017. Living in Your Programming Environment: To-
wards an Environment for Exploratory Adaptations of Productivity
Tools. In Proceedings of 3rd ACM SIGPLAN International Workshop
on Programming Experience (PX/17.2). ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3167108

1 Introduction
Knowledge workers such as scientists, financial officers, or
journalists often use software tools, such as email clients,
task lists, or data analysis environments, to solve domain-
specific problems and organize their work. Their work flow
is often optimized, tailored to circumstances, and persona-
lized. Work processes throughout one field of work may
vary between different people and scenarios and can and do
change regularly [7, 14]. For example, journalists might at
one time work with official statistics on data and at another
time conduct a survey on a focus group.

Consequently, standard software tools, which are tailored
for recurrent work patterns across domains, are not always
suitable for the task at hand. With work patterns so diverse,
it is also difficult for developers to anticipate desired configu-
ration options in advance. For example, the “merge mail” tool
in Microsoft Office 2016 can create personalized mass e-mails
by drawing information from a Microsoft Excel spreadsheet.
However, it is does not allow to add individual attachments
to those emails. This can become a nuisance for anyone
wanting to send out personalized questionnaires. To fit such
specific tasks, the knowledge workers themselves should ide-
ally be able to quickly adapt the software tools. The range of
possible adaptations spans from changing the display string
of a person to include the age to automating very particular
workflows, for example when processing applications to a
program whose rules regularly change. As knowledge work

17

https://doi.org/10.1145/3167108
https://doi.org/10.1145/3167108

PX/17.2, October 22, 2017, Vancouver, BC, Canada P. Rein, J. Lincke, S. Ramson, T. Mattis, and R. Hirschfeld

can involve complicated tasks, which require multiple soft-
ware tools in combination, users might also want to integrate
their tools when desired.
Due to the unpredictable nature of their tasks, new use

cases and requirements might only be revealed during the
use of a tool. Thus, the environment should offer an explo-
ratory style of tool customization allowing users to see the
effects of changes immediately within the tool in use. As a
consequence, they see the effects of their changes immedia-
tely in the situation which initially brought up the new use
case. Thereby, users can experiment and explore different
designs directly in their work environment.
Self-sustaining exploratory programming environments

such as Squeak/Smalltalk [5] and Lively/Webwerkstatt [6]
already support the integration and exploratory adaptation
of programming tools. They achieve this through a single in-
memory and persistent data representation and facilities and
features for an exploratory style of development. However,
in the recent past, such systems have not been used as envi-
ronments for everyday tasks, but rather as environments for
programming applications or authoring media. In contrast,
the present environments for our productivity tools, such
as operating systems or the web, make it difficult even for
professional programmers to adapt their tools. For example,
these environments do not give users access to the source
code of an application and do not allow users to change the
behavior of applications while they are running by default.
Given that even professional programmers struggle to adapt
their tools in such environments, tool adaptations by non-
professional programmers using these environments seem
unlikely.
In this paper, we describe our first steps towards a self-

sustaining programming environment to be suitable for ever-
yday tasks such as writing e-mails, managing task lists, or
writing this paper. Our observations are derived from an
experienced programmer using a Squeak/Smalltalk image as
the primary environment for carrying out everyday tasks
over a period of eight months. In particular, we describe the
modifications to the language, the tools added to the environ-
ment, and the applications developed and used. Further, from
our experiences with the environment, we derive further re-
quirements and features beneficial to both programmers and
users.

Structure of this Paper. After a short introduction to our
programming/runtime environment, we describe the tools
adjusted, built, and integrated. We comment on related envi-
ronments and approaches and discuss resulting requirements
and desired features for such environments.

2 Features of Exploratory Programming
Environments

Exploratory programming is a technique useful in scenarios
in which the requirements are not completely understood yet

or likely to change often during use of software [11, 16]. Due
to the simultaneous use and development of software the
problem space is explored, and through experimenting with
implementation alternatives, the design space is explored.
This is particular interesting for software which is used daily
and in a variety of different contexts. Several environments
and tools have been proposed which support this style of
programming [16].

A survey of exploratory programming environments and
methodologies resulted in the following four essential featu-
res for “exploratory software” [16, 18]:

• “continuously executable”: The product of the explo-
ration process should be a tool which helps its users
in working on information. Thus, a mere static repre-
sentation of the software during development is not
desirable. The tool to be created should ideally be con-
tinuously running.

• “easily extensible”: Programmers should be able to
modify the software easily and quickly get feedback
on their modification. This means that changes should
be easy to apply and should immediately become part
of the application even while it is running.

• “conveniently explorable”: In order to allow the explo-
ration of design alternative, the environment should
support the management of alternatives. This can be
achieved, for example through providing branches in a
version control system, or dynamic dispatch between
different implementations.

• “usefully explainable”: The exploratory programming
process aims to allow programmers to understand the
problem and design space. As such, the environment
should provide means to enable programmers to un-
derstand the application, for example through state
inspection or visualizations of the dynamic system
behavior.

Our described environment is based on Squeak/Smalltalk
which supports the four described features [5, 11].

2.1 Exploratory Programming Environments and
Squeak/Smalltalk

Squeak/Smalltalk is an exploratory programming environ-
ment [5]. As it is based on the Smalltalk language, every-
thing in the environment is an object, including the meta-
structures of classes and methods [4].

Squeak/Smalltalk supports the “continuously executable”
features as it allows developers to run applications next
to their development tools in the same environment. The
environment does not distinguish between the application
and the development tools, as both are mere objects.
Further, as the environment can hot-swap methods, it

makes applications “easily extensible”. Programmers can
edit the source code while the application is running. Their
modifications become “live” immediatelywhenever they save

18

Living in Your Programming Environment PX/17.2, October 22, 2017, Vancouver, BC, Canada

a method. As soon as their modified method is executed in
the application they can potentially see the effects of their
modification.
The support for convenient exploration is available for

source code as well as runtime state. Alternative versions of
the source code can be managed on a small scale through
local versioning of methods. On a larger scale, alternative
versions of the source code can be managed using integrated
version control systems, such as Monticello or git. Runtime
state can be versioned by writing the runtime state into
an image file, which is a persistent representation of the
memory content. While this allows for basic checkpoints of
runtime state, it currently lacks support for merging different
states or selecting single changes.
Finally, the environment provides tools to support the

“usefully explainable” feature. With the object explorer and
inspector tools, programmers can inspect and manipulate
any object in the environment. The Squeak/Smalltalk debug-
ger also enables programmers to stop the execution of any
Smalltalk process and inspect and manipulate the state on
the stack. To explore the runtime behavior, programmers can
also change the source code of a method in the debugger and
continue the execution from the beginning of the modified
method.

3 Establishing Productivity Tools in a
Development Environment

Squeak/Smalltalk is primarily designed as a programming,
media authoring, and learning environment. In order to sup-
port integrated productivity tools, a number of adaptations
are necessary. Besides adding the actual tools for getting ever-
yday tasks done, we also extended the environment with
features such as persistent objects and textual search on
collections of objects, and extended the Smalltalk language,
for example with a transparent notification mechanism for
changes to object state.

All adaptations are derived from everyday use of the envi-
ronment. Over the course of eight months, one of the authors
gradually moved their everyday productivity tools from a
Microsoft Windows and Web-based environment to the des-
cribed Squeak/Smalltalk environment. At the time of writing,
our system is in active everyday use (actually this paper was
written in the environment1) in order to ensure that the tools
are actually useful.
In order to illustrate the nature of the environment, we

will first give a short walk through through our environment

1The paper was written as a Text object. We used Markdown to describe
the structure in an editor supporting basic Markdown syntax highlighting
and wrote the contents to a file. A shell script then converted the markdown
file with PanDoc to Latex and started a Latex build process. The execution
of the shell script could be triggered from the image but the corresponding
module was not working at the time of writing. The editing of the final
Latex file was also done in the image through a file text editor.

based on a scenario in which the user administers partici-
pants of a seminar. This will also provide a brief overview
of some of the productivity tools implemented so far. Ba-
sed on that, we will explain the more technical and generic
adaptations of the environment.

3.1 Walkthrough
The following scenario is inspired by the everyday tasks
performed in the environment. The concrete names have
been changed.
Given a common day, the user arrives at the office and

wants to check their email inbox. After starting the environ-
ment from the host operating system, they see the screen in
Figure 1.

GMail INBOX(63)

HPI INBOX(19)

The Rack

Figure 1. The environment directly after opening it. On the
right there are three desktop icons (whitespace intended).

GMail INBOX(63)

HPI INBOX(19)

The Rack

mail browser

Marcel Taeumel <marcel taeum Tre!en des Squeak e V am 14 Oktober2
Marcel Taeumel <marcel.taeum.. Fw: Unzustellbar: Tre!en des Squeak e.V
"Weese, David" <david.weese@.. [jobs] Werkstudent am SAP Innovation C
"Rein, Patrick" <Patrick.Rei.. mails
"Noack, Jonas" <Jonas.Noack@.. Vortragsabgabe Team 02 EToys Calliope
Felicia Flemming <fe.#emmin.. Gerade gefunden...
Neo4j Webinars <webinar@neot.. Last Chance to Register - RDBMS to Gr a
Marcel Taeumel <marcel.taeum.. Squeak.de --- Komisches Markdown-Ren
Fabio Niephaus <fabio.niepha.. Re: Squeak.de --- Komisches Markdown-
"Perlich, Anja" <Anja.Perlic.. Vorbereitung Tre!en Dateneingabe
"Perlich, Anja" <Anja.Perlic.. FW: Datensammlung DTRP Outcomes
Robert Hirschfeld <robert.hi.. (HP)DTRPDB
"Pape, Tobias" <Tobias.Pape@.. Einrichtung und Weiterleitung SWA HPD
Robert Hirschfeld <robert.hi.. Lehrveranstaltungen WS-17/18 (Bitte um
Jens Lincke <jenslincke@gmai.. memo
"Perlich, Anja" <Anja.Perlic.. RE: RE: DB-Model DTRP
"Rein, Patrick" <Patrick.Rei.. List of names to repair
Jens Lincke <jenslincke@gmai.. es war doch schon in "it's alive" ...
"Menning, Axel" <Axel.Mennin.. Fwd: DB-Model DTRP
"Menning, Axel" <Axel.Mennin.. Re: DB-Model DTRP
Marcus Ding <marcus.ding@stu.. Abgabe
Schalt, Julia Übersicht Research Outcomes
jonas.hyland@student.hpi.de [PLCTE] Switching groups
INBOX

[PLCTE] Switching groups

reply

[PLCTE] Switching groups

2017-08-07T07:00:00+02:00

CC

patrick.rein@hpi.uni-potsdam.de

jonas.hyland@student.hpi.de

Dear Patrick Rein,

I attend the seminar PLCTE and I would like to switch from group number 5 to group

number 6.

Thanks and best wishes,

Jonas

Figure 2. A screenshot showing the mail browser in the
background and the mail reader with the student’s email in
the foreground.

19

PX/17.2, October 22, 2017, Vancouver, BC, Canada P. Rein, J. Lincke, S. Ramson, T. Mattis, and R. Hirschfeld

They double-click on the symbol labeled “HPI Inbox” to
open a window that shows the emails in the “INBOX” folder
of the “HPI” account. Skimming over the list, the user sees
an email from a student attending one of his seminars and
opens it by doing a double click on the list item. Another
window opens showing the contents of the corresponding
email object (see Figure 2).
The email says, that the student would like to switch to

another group. As the user first has to check with another
lecturer of the seminar, they create a todo item by opening a
context menu on the list item in the mail browser (see Figure
3).

The Rack

[PLCTE] Switching groups

reply

e

mail browser

"R i P t i k" P t i k R i Li t f t i
Jens Lincke <jenslincke@gmai.. es war doch schon in "it's alive" ...
"Menning, Axel" <Axel.Mennin.. Fwd: DB-Model DTRP
"Menning, Axel" <Axel.Mennin.. Re: DB-Model DTRP
Marcus Ding <marcus.ding@stu.. Abgabe
Schalt, Julia Übersicht Research Outcomes
jonas.hyland@student.hpi.de [PLCTE] Switching groups
INBOX

explore

create todo for it

show details

references to

move to trash

archive message

toggle read status

Figure 3. The context menu for a email object.

From a technical perspective this creates a persistent object
of the class ToDo which is automatically persisted in the
global object storage called soup protecting it from garbage
collection.

After finishing other work and agreeingwith the colleague
that the student can switch groups, the user wants to come
back to the task. Therefore, they open a tool showing the
contents of the object rack (see Figure 4). The object rack is a
hierarchical ordering system in which users can store objects
in folders under self-assigned names. While it looks similar
to a file system it merely serves as an organization tool and
is not primarily a persistence mechanism.

GMail INBOX(63)

HPI INBOX(19)

The Rack

Your Object Rack

(todo) postage for sending out the signature cards
(todo) CCR Tool Code Review
(todo) Clean up bibtex results
(todo) Thonny IDE for Python
(todo) Get rid of blue boxes in o!ce
(todo) investigate UTF-8 issue
(todo) look at UTF-16 text converter changes in inbox
(todo) Updated postgress on HPI computer: install postgressql-9.5
(todo) Upload htmlreadwriter
(todo) Finish the paper
(todo) Download archive of group 17
(todo) Switch group Jonas Hyland in PLCTE

open todos
todos
Calendars
the new home experiment
People
Projects

root

Figure 4.A tool showing the object rackwith the open query
folder that lists open todo items.

The user looks into the open todos folder. This folder is
a query folder which selects persistent objects that comply
with the following query:

[:object | object isToDo and: [object isDone not]]

In order to find the email the todo item refers to, the user
performs a double click on the list item representing the todo
item and thereby opens up an object explorer. The email the
todo item refers to is information which is specific for this
instance and is thus stored in an instance-specific field. The
user opens the context menu on the email list item to show
the details of the email which opens the email reader (see
Figure 5).

GMail INBOX(63)

HPI INBOX(19)

The Rack

Your Object Rack

(todo) postage for sending out the signature cards
(todo) CCR Tool Code Review
(todo) Clean up bibtex results
(todo) Thonny IDE for Python
(todo) Get rid of blue boxes in o!ce
(todo) investigate UTF-8 issue
(todo) look at UTF-16 text converter changes in inbox
(todo) Updated postgress on HPI computer: install postgressql-9.5 packages
(todo) Upload htmlreadwriter
(todo) Finish the paper
(todo) Download archive of group 17
(todo) Switch group Jonas Hyland in PLCTE

open todos
todos
Calendars
the new home experiment
People
Projects

root

(todo) Switch group Jonas Hyland in PLCTE...etc...

scheduledFor nil
reminderDate nil
dueDate nil
done false
description 'Switch group Jonas Hyland in PLCTE'
createdAt 2017-08-07T21:29:00.836378+02:00

1 jonas.hyland@student.hpi.de
#refersTo a Set(jonas.hyland@student.hpi.de
#setToDone nil

root (todo) Switch group Jonas Hyland in PLCT

Evaluate expressions for the current tree selection...

inspect

monitor changes

viewer for this value (v)

basic inspect

copy name (c)

class refs (N)

assignments... (a)

references... (r)

browse protocol (p)

browse hierarchy (h)

browse class

browse full (b)

explore pointers

chase pointers

objects pointing to this value

methods storing into this inst var

method refs to this inst var

explore (I)

inspect (i)

explore

create todo for it

show details

references to

move to trash

archive message

toggle read status

Figure 5. The context menu of a todo item in an ordinary
Squeak/Smalltalk object explorer.

Now, in order to change the group the student is assigned
to, the user retrieves information about the user by selecting
the name of the student in the senders field and performing
a full-text search with the name. The result of the full-text
search is a set of objects displayed in an object explorer (see
Figure 6).

[PLCTE] Switching groups

reply

[PLCTE] Switching groups

2017-08-07T07:00:00+02:00

CC

patrick.rein@hpi.uni-potsdam.de

Dear Patrick Rein,

I attend the seminar PLCTE and I would like to switch from group

number 5 to group number 6.

Thanks and best wishes,

Jonas

GMail INBOX(63)

HPI INBOX(19)

The Rack

{(todo) Switch group Jonas Hyland in PLCTE...etc...

4 PLCTE
3 Jonas Hyland
2 Group5: Jonas Hyland, Stefan Retz
1 (todo) Switch group Jonas Hyland in PLCTE

root {(todo) Switch group Jonas Hyland in PLCTE . Group5: J

Evaluate expressions for the current tree selection...

inspect

jonas.hyland@student.hpi.de

Figure 6. An object explorer showing the result set of the
search for the selected string in the mail reader tool.

They also search for the other group by searching for the
term group5 TeachingGroup. This search provides a set
of instances of TeachingGroup matching the term group5.

20

Living in Your Programming Environment PX/17.2, October 22, 2017, Vancouver, BC, Canada

Currently the environment does not include graphical tools
to change arbitrary object references. Thus, the user wants to
change the groupmembership of the student programatically.
Therefore, the user drags both objects to a workspace in
which they can switch the groups with the following script:

teachingGroup98123 removeMember: Person129321.
teachingGroup76876 addMember: Person129321.

The task is thereby completed. The user hence opens the
context menu of the todo item in the explorer again and sets
the item to done. This updates the list of open todo items
because the tool is notified of all changes to its contained
items.

As this was the third email for which the user had to look
up the assigned group of the student, the user decides to
extend the email reader to allow easier access to information
related to a person. In order to implement that, they open
up the Squeak/Smalltalk class browser and browse the class
describing the email reader tool. As they want to change
the way the sender is displayed, they change the getSender
method to the following:

getSender
| senders |
sendersText := mailMessage from asText.
(MailAddressParser addressesIn: mailMessage from)

do: [:address | | start end block |
start := mailMessage from findString: address.
end := (start + address size) - 1.
searchPerson := [(soup search:
(Person all search: address)
first asString) explore].

sendersText addAttribute: (PluggableTextAttribute
evalBlock: searchPerson) from: start to: end].

^ sendersText

As this code is rather complex, such code might not be
written by inexperienced programmers. However, as in our
case, this adaptation of the tool was quickly done by an
experienced programmer directly while using the tool.
In detail, the method executes the block searchPerson

when users click on the email address in the senders field.
The executed block uses the full-text object search to find
information referring to the person the email address belongs
to. In order to check whether this implementation already
serves the purpose, the user re-opens the email reader on the
same message and clicks on the student’s email address to
open an explorer on the set of information about the student
(see Figure 7).

GMail INBOX(63)

HPI INBOX(19)

The Rack

[PLCTE] Switching groups

reply

[PLCTE] Switching groups

2017-08-07T07:00:00+02:00

CC

patrick.rein@hpi.uni-potsdam.de

jonas.hyland@student.hpi.de

Dear Patrick Rein,

I attend the seminar PLCTE and I would like to switch from group

number 5 to group number 6.

Thanks and best wishes,

Jonas

{(todo) Switch group Jonas Hyland in PLCTE...etc...

4 PLCTE
3 Jonas Hyland
2 Group5: Jonas Hyland, Stefan Retz
1 (todo) Switch group Jonas Hyland in PLCTE

root {(todo) Switch group Jonas Hyland in PLCTE . Group5: J

Evaluate expressions for the current tree selection...

inspect

Figure 7. The adapted mail reader tool. The blue color of
the text representing the sender indicates that the text can
be clicked on. After clicking on it, an object explorer opens
up that shows the search result.

3.2 Adjustments to the Language and Environment
Some of the illustrated tools and features are generic ex-
tensions of the Smalltalk language or the Squeak/Smalltalk
environment, such as persistent objects, instance-specific
state, generic observers, and full-text object search.

3.2.1 Persistent Objects
A central adjustment to the environment is the capability of
persisting arbitrary objects. The Squeak/Smalltalk environ-
ment already provides persistent runtime state through the
image mechanism which serializes the complete memory
content in a file. However, within the runtime state objects
are volatile again, as they are subject to garbage collection. In
the Squeak/Smalltalk environment only meta-objects such as
classes and some configuration objects are automatically pro-
tected from garbage collection. This is achieved by storing
them in one of the few global root objects.
In an un-modified Squeak/Smalltalk environment, tools

that want to persist their domain objects have to take care of
the persistence themselves. A common strategy is to make
use of the persistence of class objects by storing the domain
objects in an instance variable of a class. This in turn makes
integrating tools more difficult, as other tools can only access
these domain objects through the idiosyncratic interface of
the tool providing the objects. For example, a bibliography
management tool might store the bibliography database as
a set in one of its classes and only provide access to them
through listing the reference keys and allowing to retrieve
entries for a reference key.

In our environment, we implemented a central persistence
mechanism called soup which is a special Set object stored
in a global root. Any tool can access the soup and store and
retrieve all stored objects through the same interface. The-
reby, our exemplary bibliography tools could simply store
its objects in the soup through the add: method. Further, all
other tools working with bibliography data can now retrieve

21

PX/17.2, October 22, 2017, Vancouver, BC, Canada P. Rein, J. Lincke, S. Ramson, T. Mattis, and R. Hirschfeld

these bibliography objects from there by filtering the soup
set, for example by testing for class membership.
In order to make it more convenient for users to persist

objects, we also provide the PersistentObject class. Any
instance of that class or one of its subclasses is automatically
added to the soup on creation. Beyond that, persistent objects
are just common Smalltalk objects.

3.2.2 Instance-Specific State
As objects can be used in a variety of tools, it might be
necessary to store unanticipated information in an object.
For example, when we want to create a literature survey tool,
we might want to store the information to which extent a
publication was reviewed to the publication object itself.
However, the Smalltalk language itself only allows for

class-defined set of instance variables [4]. In order to sup-
port the mentioned use cases, we added an interface for
instance-specific state. We achieved this by maintaining a
global dictionary mapping from an object and an instance
variable name to a value. Access to this state is made transpa-
rent by overriding the doesNotUnderstand: handler which
checks whether the message could be a setter (by checking
whether the message takes one argument) or a getter and
redirecting the call to an access of the global dictionary.

3.2.3 Generic Observer
To give users a sense of seeing the actual state of objects,
graphical tools should always display the current state of
objects. In order to update the graphical view on changes
to the objects displayed in the tool, the observer pattern is
often used, with the tool being the observer of the objects.
For this to work, the developer of the domain object class
has to be careful to notify the observers whenever relevant
state changes.

Through the soup, new and unanticipated tools can access
domain objects. These tools might need to be notified of state
changes which do not yet trigger an observer notification.
As the soup can contain objects from arbitrary classes, tool
developers can not manually adapt these domain classes to
trigger notifications.
To prevent this issue, we added a generic observer no-

tification to all writes to instance variables. We achieved
this by installing a custom compiler adding the call to the
notification method after each assignment to an instance
variable. For now, we have limited this modification to the
PersistentObject subclasses, to prevent a major perfor-
mance impact due to affecting the base system.

3.2.4 Full-Text Object Search
Users can store any object in the soup without storing any
other reference to this object. This makes retrieving these
objects difficult and users have to resort to either manually
sift through the complete soup or to programatically filter it.
Both ways are too time-consuming for everyday usage when

users actually want to just navigate to an object of which
they know the relevant terms, such as the name of a person
or parts of the title of a publication.

Hence, we added a simple full-text search to the soup and
all other collection objects in the environment through the
message search:. The search goes through all objects in
a collection, collects the values of their instance variables
and instance-specific state, converts them into lowercase
strings, and finally checks whether all search terms occur
somewhere in these strings.

3.3 Tools
Besides the fundamental modifications of the environments,
we have also extended the tool set: We added the object
rack for organizing objects and we added a context menu
mechanism which provides access to selected methods of
objects.

3.3.1 Object Rack
The object rack is a hierarchical object organization tool. It
consists of folders and folder entries. Users can drag objects
into a folder and thereby create an entry which they can
give a name. Further, users can create query folders which
do not store objects but query the soup for matching objects
and display them. Users can define the query as well as a
post-processing script on the resulting set, for example to
sort the results.

As the rack is persistent, any objects stored in the rack are
also persisted. However, this is not the same as storing them
in the soup. If the object is only stored in the rack and a user
removes the object from there, the object will eventually be
garbage collected. Objects that are also stored in the soup
can be removed from the rack and remain persistent.
The environment also includes a graphical tool showing

the rack as a hierarchical tree (see Figure 4).

3.3.2 Context Menu for Methods
Most tools in our environment are direct projections of the
underlying domain objects onto view elements, for exam-
ple list items (This perspective on tools is inspired by the
model-view-controller (MVC) pattern and the Vivide envi-
ronment [15]). As a result, the view elements are often direct
representations of single objects. Consequently, we added a
mechanism which allows users to invoke methods of these
objects from the user interface via a context menu.
Therefore, we added the annotation operationLabel:

which specifies the label under which the method should
be available. Whenever a menu for an object is build, all
methods with this pragma are collected and used to build
the context menu.
setDone

<operationLabel: 'set done'>
self isDone ifFalse: [self done: true]

22

Living in Your Programming Environment PX/17.2, October 22, 2017, Vancouver, BC, Canada

This works well for simple methods without parameters.
For more complex operations, it is still necessary to create
a new method which describes the user interactions, for
example the method for editing the query of a rack query
folder:
editQuery

<operationLabel: 'edit query'>
^ UIManager default
edit: self query decompile decompileString
label: 'Edit folder query'

accept: [:v | self query: (Compiler evaluate: v)]

4 Living in and Adapting Your
Environment

Through the described features, its user was able to use the
environment for everyday tasks. Further, in several situati-
ons, the advantages of an adaptable environment became
clear. At the same time, we have also experienced several
problems, with regard to the integrity and safety of data,
as a consequence of the system providing little protection
between tools.
To illustrate the extend to which the environment was

used, we first give an overview of the domain models created
and used.

4.1 Created Domain Models
The environment has mostly been used for work in the con-
text of university research and teaching. Thereby, the follo-
wing subclasses of PersistentObject were created:

• ToDo
• DiaryEntry
• DiaryHassle
• TeachingGroup
• TeachingTopic
• Course
• Agent
• Person
• CreativeWork
• Conference

Besides the ToDo class the following classes were also
used for private projects:

• GardenPlanting
• GardenMap
• GardenPlant
• GardenPot

In total, this resulted in 847 persistent objects stored in the
soup up until the day of writing. Most of themwere created in
the environment, some were imported, for example through
a tool for importing BibTex data.
In addition to these domain models, an object-based in-

terface to maildir directories and an object-based interface
to CalDAV calendars was created. For the maildir objects, a

mail browsing, reading, and writing tool was created (see
Figure 2). For the calendars, a deadline calendar tool was
created which shows all weeks of a year and whether they
contain a deadline.

4.2 Adaptation and Integration
We want to further illustrate the potential for ad-hoc adapta-
tions and integration in the environment with two examples.
The first one illustrates how easily we can extend the envi-
ronment with features affecting the complete environment.
The second one demonstrates how powerful the tools can
become through adaptations.

4.2.1 Creating Todo Items
As the complete behavior of the environment is accessible
and adaptable, we can implement features changing the beha-
vior of the complete environment. In this case, we implement
that users can create a todo item for any object in the en-
vironment. Users should be able to execute this from the
generic context menu of objects in all tools. In order to pro-
vide this generic operation, we implemented the method
in the Object class, which is the superclass of most classes
in the environment. The following method describes the
operation:
interactiveCreateToDoForIt

<operationLabel: 'create todo for it'>
^ (ToDo new: (UIManager default

request: 'Describe the ToDo:'))
refersTo: self;
yourself

As this extension was developed spontaneously, we did
not modify the list of instance variables of the ToDo class.
Instead, we set the object referred to as instance-specific
state through the call refersTo:.
This adaptation is also rather easy to integrate, as the

existing tools, such as the Squeak/Smalltalk object explorer
have already been adapted to respect the annotated methods,
when building a context menu.

4.2.2 Z3 Solver for Seminar Topic Assignment
Having objects and programming facilities easily available
also opens up new possibilities for leveraging computatio-
nal resources. For example, when organizing lectures it is
sometimes necessary to assign topics to groups of students.
In this scenario, 17 student teams handed in three ordered
wishes out of a list of 20 suggested project topics. Instead
of determining the assignment manually, we generated a
problem description for the Z3 solver using the following
script:
weights := #(50 45 10).
result := ((teams collectWithIndex:
[:t :i | '(declare-const G' , i asString , ' Int)'])

joinSeparatedBy: String crlf).

23

PX/17.2, October 22, 2017, Vancouver, BC, Canada P. Rein, J. Lincke, S. Ramson, T. Mattis, and R. Hirschfeld

result := result , String crlf ,
'(assert (distinct ' ,
((teams collectWithIndex: [:t :i |
'G' , i asString]) joinSeparatedBy: ' ').

result := result , '))'.
result := result , String crlf ,
((teams collectWithIndex: [:t :i | | groupString |

groupString := 'G' , i asString.
t topicWishes collectWithIndex: [:w :index |
'(assert-soft (= ',
groupString,' ',(topics indexOf: w),
') :weight ',(weights at: index),')']])

flatten joinSeparatedBy: String crlf).
result := result , '
(check-sat)
(get-model)'.

We then used the resulting script as input for a Z3 solver
and then parsed the result string back into objects from our
teaching model:
(solved lines pairsCollect: [:g :t |

(teams at:
((g findTokens:' ') second copyWithout: $G) asNumber)
-> (topics at: ((t select: #isDigit) asNumber))]).

As these scripts were created ad-hoc for this particular use
case, they exhibit several code smells andmight be difficult to
maintain. At the same time, these scripts were never intended
to be reusable as they were easy to write and were only
intended to solve the particular issue in that moment.

4.3 Data Loss and Corruption
Due to the open and integrated nature of the environment,
a major issue we experienced is the loss or corruption of
personal data. We have experienced both and want to explain
the observed causes for these incidents.

4.3.1 Data Loss
Data loss occurred pre-dominantly because of technical rea-
sons. We can distinguish between causes originating from
the platform and causes originating in the developed tools.
Issues in the first category were mostly caused by the

host operating system (Microsoft Windows) terminating the
Squeak/Smalltalk process, for example due to an automatic
restart after an applied update. The virtual machine (VM)
process can be terminated, as it does not provide information
on unsaved changes to the operating system. Another reason
is a failing VM resulting in a corrupted image file. For stability
reasons, we are using a 32bit VMwhich can lead to corrupted
image files in case an object-space with too many objects is
serialized. In the case of a corrupted image file, we were able
to use a host system backup of the image file. In the case
of a terminated VM process, there was not yet any backup
available as the image file was not yet updated.

Issues in the second category were caused by faults in the
new tools. For example, we had an undetected fault in the
maildir synchronization library that writes changes in the
objects back to the file system. As a result, six email were
completely deleted from the mail account. As a consequence,
we first improved the test coverage of the module before we
continued using it.

4.3.2 Data Corruption
The data corruption that occurred was caused either by a
fault in a tool or by unconsciously creating persistent objects.

As an example of the first cause, we experienced a failure
during the importing of BibTex data. The failure occurred
at a point of the import process at which new persistent
Person objects were created. The failure left one such in-
stance created but unpopulated. The instance lingered in the
environment for a while until we discovered it accidentally
while looking for information on another person.

Such empty instances were also often created when we
worked on a script or new method. We were often not aware
that the script created a new persistent instance. This was
less problematic as long as the instance remained empty
but become a nuisance when filled with sensible data, for
example resulting in several objects which all represent the
same person.

5 Discussion
The described modifications of the Squeak/Smalltalk system
and the observations made are only first steps towards an
environment for the productive use and exploratory adapta-
tion of tools. Based on our experiences so far, we determined
a list of beneficial features for such an environment. Further,
we unveiled a number of conceptual challenges for such an
environment.

5.1 Beneficial Features
The described environment is already useful for everyday
productivity tasks. Based on our experiences, we argue that,
amongst others, the following six features are beneficial for
similar environments. This list does not represent a com-
plete catalog of features of exploratory programming envi-
ronments hosting productivity tools, but should serve as a
starting point for developers creating similar environments.

• Central Object Persistence: The central persistence of
objects allows all tools in the environment to access
the data of other tools. As the persistence mechanism
does not allow for separate storage for single tools, all
objects can be accessed from the same location. The-
reby, when users want to integrate objects normally
accessed through another tool, the can make ad hoc
use of them.

• Organization Tool for Objects: While object persis-
tence helps to keep important objects, it does not help

24

Living in Your Programming Environment PX/17.2, October 22, 2017, Vancouver, BC, Canada

with accessing the objects. Thus, some form of organi-
zation tool for objects, for example folders, tags, or a
diary of recently used objects, is beneficial.

• Instance-specific Fields: As many tools can work toget-
her on the same object graph, there might be situations
in which unanticipated information needs to be added
to an object. The environment or programming lan-
guage should allow for such information to be added
to an object with the same effort as is required to add
common information.

• Transactions: Tools and scripts have a direct effect on
the persistent objects. As described above, this can
lead to data corruption or even data loss. The fear of
corrupting production data might in turn hamper the
exploration of new features. To prevent data corrup-
tion, the environment should support transactions and
a recovery system. Using transactions, programmers
can experiment more easily and revert erroneous state
changes.

• Backups: The loss of production data can destroy the
trust of a user in the environment. Thus, a backup me-
chanisms should be in place to recover from any loss
of data. Squeak/Smalltalk already provides a backup
system for changes to methods and class definitions.
Every change is written to a log file which can be
replayed on a crash. However, this does not include
changes to the runtime state. Based on the transaction
mechanism, the environment should provide a backup
mechanism for all persistent objects.

• Storage Scaling: With the current design of keeping all
data in memory, there is a natural limit to the amount
of information that can be managed by such an envi-
ronment. To become a viable alternative to common
operating systems, the environment has to allow users
to manage amounts of information that are greater
than the main memory. Therefore, the system has to
provide a swapping mechanism through which the
virtual machine only has to keep parts of the object
graph in memory.

5.2 Conceptual Outlook
Interesting conceptual challenges arising from the develop-
ment of the described environment span the question of
programing expertise required to adapt tools, the integration
of other languages and paradigms, and the integration of in-
formation whose life-cycle is managed by external services.

5.2.1 End-Users
So far, our environment is designed for a programmer with
more than five years of programming experience in the
Squeak/Smalltalk environment. As such, the experiment can
only give us insights into how much such a system can be

adapted by a person already capable of programming. Furt-
her, as the person using the environment is looking for op-
portunities to adapt the tools, the resulting list of adaptations
will have be biased.

Consequently, the question arises to which extent the
adaptation of tools can be made accessible to users without
programming skills in a way that end users will make use of
it. While changing the sorting criteria for a list might be well
within reach, an adaptation of the mass email function to also
allow for attachments might not be. First interesting steps
would be to provide users with a block-based programming
language for particular aspects of the application and study
the impact on the number and extent of adaptations. Suitable
first aspects to be made accessible to end-users would be
anything that can be adapted through a simple functional
projection from the domain data, such as sorting, changing
the display string, or adding new information made up from
other parts of domain data (e.g. constructing the full name
of a person).

5.2.2 Integrating other Languages
Parts of the benefits of the presented environment have to
be attributed to the fact that all applications are written in a
single language using a data structure to represent informa-
tion. Due to today’s diverse application domains it would be
beneficial to allow for a variety of languages and paradigms
to be used in such an environment. However, to retain the ad-
vantages regarding adaptability and integration of tools, all
these languages would need to integrate with the Smalltalk
object model. This means that these languages need to be
adapted to use objects as their central data structure. While
several languages have been embedded into Smalltalk [10],
the question remains whether these embedded languages
could be adapted to use objects as a data structure without
also adopting message dispatch as a control-flowmechanism.

5.2.3 Interfacing with External Systems
The described environment has an architecture which is an
alternative to the architectures of existing computing en-
vironments used today. As such, special care needs to be
taken to integrate this new environment with the existing
environments. We have experienced the discrepancy bet-
ween these existing systems and the described environment,
when we tried to work with information managed by exter-
nal systems. For example, when using the IMAP protocol to
organize emails, we do not change local email objects but
actually change the data structures hosted on a server [9].
At the same time, we would like to allow users to access
their emails as persistent objects the way they can access,
for example, local ToDo item objects.
In particular, this integration entails the issue of seria-

lization and preservation of identity in the system. When
importing bibliography data from a BibTex file, the list of

25

PX/17.2, October 22, 2017, Vancouver, BC, Canada P. Rein, J. Lincke, S. Ramson, T. Mattis, and R. Hirschfeld

authors is only available as a list of names. The disambigua-
tion has to happen at import time through user intervention.
This intervention becomes necessary as the exact identity
information for single people is not encoded in the BibTex
file. The manual intervention is infeasible for larger amounts
of data which users might browse, for example through a
web-based application programming interface (API).

Further, to enable scripting, some form of local copy of
objects has to bemaintained by the environment. At the same
time, the remote system might manage the life cycle of the
object and might, for example, delete the object. This entails
that first, the environment requires a way to get notified
about these changes, and second, that the environment has
to decide how to modify the local state. This should depend
on what users would expect to happen to their objects, which
is to be determined in future work.

6 Related Work
The idea of an adaptable environment for productivity tools
can be found in numerous environments with varying sup-
port for exploratory adaptation.
A historically outstanding class of environments are the

software systems running on Lisp Machines [12]. As the har-
dware was able to execute Lisp natively the complete system
was written in Lisp. This enabled users to change everything
in the system while using it and seeing the effects directly in
their applications. Further, some of the Lisp systems imple-
mented Common Lisp and thus supported object-oriented
programming. As all software was running in Lisp, applica-
tions were able to exchange these objects directly. Finally,
some of these systems [12] provided means to persist trees
of Lisp objects. Unfortunately, there are no accounts of the
experience of users working with these systems.

One of the currently most prominent environments which
allows its users to adapt it to their needs are Unix environ-
ments. Most parts of these environments are accessible to
the user through a single interface, which is files and file
operations. Further, many tools can be adapted and extended
using bash scripts. However, the support for exploratory
development of these tools is limited by default. Runtime
state can not be inspected and running programs can not be
modified in general.

The EMACS environment improves on these limitations [13,
16]. Initially designed as a text editor, it has extensions which
add productivity tools such as the org-mode for managing
tasks [2] or Gnus [3] for reading emails. Most of the en-
vironment is adaptable directly from within the environ-
ment through the LISP language. Further, the environment
provides tools for the exploratory development of the en-
vironment. Due to its original purpose, the environment
is inherently text-based, which limits the tools which can
developed for it.

Apple Script [1] allows users to automate common tasks
by writing scripts which use Apple Script APIs of installed
applications. While it allows for an easy extension of the
environment, the capabilities of scripts are limited to the
Apple Script API the applications provide.

The Microsoft Office tool set allows users to adapt tools
through writing scripts for example in Visual Basic for Ap-
plications (VBA) [17]. The scripting engine is available in all
major tools of the Office tool set. Users can call the VBA API
of the office tools, the surrounding Microsoft Windows ope-
rating system, and of applications integrating the Microsoft
script engines. Similar to Apple Script, the capabilities of the
scripts are limited to exposed functionality and data.

The described approaches are designed around local data,
most often stored in the form of files. New software tools are
often implemented as mobile applications or web applicati-
ons which work with services running on remote servers.
Adapting single applications is hindered by the fact that
important parts of the application are not running locally.
However, services such as if-this-then-that (IFTTT) [8] allow
users to adapt their tools by combining them as individual
services. Through a block-based programming interface in
the web users can define which actions should be executed
whenever certain events occur. The events can stem from
any service supported by IFTTT and correspondingly the
actions can be executed by any supported service. In this ap-
proach, the user is limited to configuring explicitly exposed
functionality. Further, there is no tool support to observe or
explore the dynamic behavior of the combinations.

Users can also adapt web applications by writing browser
plugins which then change the behavior of a web page after
it loaded. Browser plugins require some technical knowledge
with regard to the life-cycle of such a plugin. At the same
time, users can write plugins using the development tools
provided by the browser, for example the Chrome toolkit,
which provide a live programming experience and allow
users to work directly on the webpage they want to adapt.
However, the access to data on the web remains restricted
by the API the server provides. Furthermore, despite the fact
that the source code is available for every webpage by de-
sign, the architecture of current web applications sometimes
restricts the access to relevant objects in order to prevent
adaptation by users2.

7 Conclusion
Software tools should be adaptable and well integrated to
support the unpredictable and unstructured work patterns
of modern knowledge workers. In this paper, we illustrated
how a modified self-sustaining exploratory programming
environment can serve as a prototype for an architecture sup-
porting this adaptation and integration of everyday software

2See for example
https://github.com/openstreetmap/openstreetmap-website/issues/1166

26

https://github.com/openstreetmap/openstreetmap-website/issues/1166

Living in Your Programming Environment PX/17.2, October 22, 2017, Vancouver, BC, Canada

tools. In particular, we described an initial set of adaptations
to Squeak/Smalltalk that support the development and use
of productivity tools within the environment. These modi-
fications were derived from daily use of the environment
and their benefits illustrated through example workflows
of how at least an experienced programmer can adapt tools
with ease. Through our prototypical environment, we hope
to hint a way forward towards an architecture supporting
the exploratory adaptation and integration of tools.

Acknowledgments
Sincere thanks also go to all PX workshop participants, who
provided valuable feedback by discussing this topic tho-
roughly. We would like to thank Alexander Meissner who
has influenced many design decisions through numerous
discussions. We gratefully acknowledge the financial sup-
port of HPI’s Research School (http://hpi.de/research_school)
and the Hasso Plattner Design Thinking Research Program.
(https://hpi.de/en/dtrp)

References
[1] William R. Cook. 2007. AppleScript. In Proceedings of the Third ACM

SIGPLAN Conference on History of Programming Languages (HOPL III).
ACM, New York, NY, USA, 1–1–1–21. https://doi.org/10.1145/1238844.
1238845

[2] Carsten Dominik. 2010. The Org-Mode 7 Reference Manual: Organize
Your Life with GNU Emacs. Network Theory, UK. with contributions
by David O’Toole, Bastien Guerry, Philip Rooke, Dan Davison, Eric
Schulte, and Thomas Dye.

[3] Inc Free Software Foundation. 2015. The Gnus Manual. http://www.
gnus.org/manual.html

[4] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language
and its Implementation. Addison-Wesley.

[5] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan C.
Kay. 1997. Back to the Future: The Story of Squeak - A Usable Smalltalk
Written in Itself. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA) 1997. 318–
326. https://doi.org/10.1145/263698.263754

[6] Jens Lincke. 2014. Evolving Tools in a Collaborative Self-
supporting Development Environment. phdthesis. Universität

Potsdam. https://lively-kernel.org/publications/media/Lincke_2014_
EvolvingToolsInCollaborativeSelfSupportingDevelopmentEnvironment_
PRINT.pdf

[7] Nicolas Mundbrod, Jens Kolb, and Manfred Reichert. 2012. Towards
a System Support of Collaborative Knowledge Work. In Proceedings
of the Business Process Management Workshops (BPM) 2012. 31–42.
https://doi.org/10.1007/978-3-642-36285-9_5

[8] Steven Ovadia. 2014. Automate the Internet With "If This
Then That" (IFTTT). Behavioral & Social Sciences Librarian 33,
4 (2014), 208–211. https://doi.org/10.1080/01639269.2014.964593
arXiv:http://dx.doi.org/10.1080/01639269.2014.964593

[9] Yakov Rekhter and Tony Li. 2003. INTERNET MESSAGE ACCESS
PROTOCOL - VERSION 4rev1. RFC 3501. RFC Editor. https://tools.ietf.
org/html/rfc3501.txt

[10] Lukas Renggli. 2010. Dynamic Language Embedding. phdthesis.
Philosophisch-Naturwissenschaftliche Fakultät der Universität Bern.

[11] D. W. Sandberg. 1988. Smalltalk and Exploratory Programming. SIG-
PLAN Not. 23, 10 (Oct. 1988), 85–92. https://doi.org/10.1145/51607.
51614

[12] Richard Stallman, DanielWeinreb, andMoonDavid. 1984. Lispmachine
manual. Massachusetts Institute of Technology. https://books.google.
de/books?id=CX4ZAQAAIAAJ

[13] Richard M. Stallman. 1981. EMACS the Extensible, Customizable
Self-documenting Display Editor. In Proceedings of the ACM SIGPLAN
SIGOA Symposium on Text Manipulation. ACM, New York, NY, USA,
147–156. https://doi.org/10.1145/800209.806466

[14] Witold Staniszkis. 2015. Empowering the Knowledge Worker: End-
User Software Engineering in Knowledge Management. In Proceedings
of the Conference on Enterprise Information Systems (ICEIS) 2015. Sprin-
ger, 3–19.

[15] Marcel Taeumel, Michael Perscheid, Bastian Steinert, Jens Lincke, and
Robert Hirschfeld. 2014. Interleaving of Modification and Use in Data-
Driven Tool Development. In Proceedings of the ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming & Software (Onward!) 2014. ACM, 185–200.

[16] J. Trenouth. 1991. A Survey of Exploratory Software Development.
Comput. J. 34, 2 (1991), 153–163. https://doi.org/10.1093/comjnl/34.2.
153

[17] John Walkenbach. 2010. Excel 2010 power programming with VBA.
Vol. 6. John Wiley & Sons.

[18] Simon Yun Pui Yung. 1992. Definitive Programming: A Paradigm for
Exploratory Programming. Ph.D. Dissertation. University of Warwick.

27

http://hpi.de/research_school
https://hpi.de/en/dtrp
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1145/1238844.1238845
http://www.gnus.org/manual.html
http://www.gnus.org/manual.html
https://doi.org/10.1145/263698.263754
https://lively-kernel.org/publications/media/Lincke_2014_EvolvingToolsInCollaborativeSelfSupportingDevelopmentEnvironment_PRINT.pdf
https://lively-kernel.org/publications/media/Lincke_2014_EvolvingToolsInCollaborativeSelfSupportingDevelopmentEnvironment_PRINT.pdf
https://lively-kernel.org/publications/media/Lincke_2014_EvolvingToolsInCollaborativeSelfSupportingDevelopmentEnvironment_PRINT.pdf
https://doi.org/10.1007/978-3-642-36285-9_5
https://doi.org/10.1080/01639269.2014.964593
http://arxiv.org/abs/http://dx.doi.org/10.1080/01639269.2014.964593
https://tools.ietf.org/html/rfc3501.txt
https://tools.ietf.org/html/rfc3501.txt
https://doi.org/10.1145/51607.51614
https://doi.org/10.1145/51607.51614
https://books.google.de/books?id=CX4ZAQAAIAAJ
https://books.google.de/books?id=CX4ZAQAAIAAJ
https://doi.org/10.1145/800209.806466
https://doi.org/10.1093/comjnl/34.2.153
https://doi.org/10.1093/comjnl/34.2.153

	Abstract
	1 Introduction
	2 Features of Exploratory Programming Environments
	2.1 Exploratory Programming Environments and Squeak/Smalltalk

	3 Establishing Productivity Tools in a Development Environment
	3.1 Walkthrough
	3.2 Adjustments to the Language and Environment
	3.3 Tools

	4 Living in and Adapting Your Environment
	4.1 Created Domain Models
	4.2 Adaptation and Integration
	4.3 Data Loss and Corruption

	5 Discussion
	5.1 Beneficial Features
	5.2 Conceptual Outlook

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

