Implementing Babylonian/S by Putting Examples Into Contexts

Tracing Instrumentation for Example-based Live Programming as a Use Case

for Context-oriented Programming

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
toni.mattis@hpi.uni-potsdam.de

ABSTRACT

Based on context-oriented programming (COP), we implemented
source code instrumentation for example-based live programming
in a modular way. These tools provide programmers with feedback
on the dynamic program behavior by showing traced values of
example invocations of a program. For that, we have to trace inter-
mediate, expression-level runtime states during the execution of
an example. As the instrumentation is only intended to improve
tool support, the default behavior of the system must not be altered.
In this paper, we demonstrate how context-oriented programming
can be used to keep the execution of examples separate from the
default behavior even in the presence of expression-level behavior
variations. We illustrate our approach by implementing Babylo-
nian Programming using ContextS2 in Squeak/Smalltalk. Based
on the implementation, we compare our COP-based Smalltalk im-
plementation to the module-rewriting-based implementation for
JavaScript.

CCS CONCEPTS

« Software and its engineering — Object oriented languages; In-
tegrated and visual development environments.

KEYWORDS

context-oriented programming, example-based live programming,
use case, Squeak/Smalltalk

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

COP’19, July 15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6863-6/19/07...$15.00
https://doi.org/10.1145/3340671.3343358

Jens Lincke
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
jens.lincke@hpi.uni-potsdam.de

Fabio Niephaus
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
fabio.niephaus@hpi.uni-potsdam.de

Stefan Ramson
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
stefan.ramson@hpi.uni-potsdam.de

Robert Hirschfeld

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
hirschfeld@hpi.uni-potsdam.de

ACM Reference Format:

Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus,
and Robert Hirschfeld. 2019. Implementing Babylonian/S by Putting Exam-
ples Into Contexts: Tracing Instrumentation for Example-based Live Pro-
gramming as a Use Case for Context-oriented Programming. In Workshop on
Context-oriented Programming (COP’19), July 15, 2019, London, United King-
dom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3340671.
3343358

1 INTRODUCTION

Live programming promises to improve program comprehension
and to make programming more accessible by providing immediate
feedback on the dynamic behavior of a program [8]. This feedback
on dynamic behavior often consists of intermediate run-time states
of some execution of the program. In order to be able to execute
the program, some input data is required. Example-based live pro-
gramming environments try to make use of examples to be able
to provide feedback on the dynamic behavior of different parts of
systems [1, 7] (see Figure 1). Programmers can define explicit ex-
amples, which are then used by the system to execute the program
and trace intermediate run-time states. Babylonian Programming
is an approach for example-based live programming environments
which enables programmers to use examples in larger systems
which span multiple modules [7].

In order to provide feedback on intermediate run-time states,
the state execution of the example has to be traced. In addition,
programmers might instrument the source code even further, for
example with additional checks on the traced run-time state. At
the same time, as Babylonian programming is intended as a pro-
gramming tool, the instrumentation of the source code should not
affect the behavior of the system under development. This poses
a modularity challenge as the instrumentation is attached to the
source code but may only be executed during the execution of an
example.

The original implementation of Babylonian Programming used
an approach based on the ES6 module system. The approach re-
quired an intricate rewriting of all modules containing any instru-
mentation. Further, it required a source code rewriting of the import
statements of instrumented modules to load other instrumented

https://doi.org/10.1145/3340671.3343358
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.1145/3340671.3343358

COP’19, July 15, 2019, London, United Kingdom

= [& < Probe

versions load save https://lively-kernel.org/lively4/lively4 ian-progr i /babyloni ing

Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus, and Robert Hirschfeld

// You can also define examples for class methods
export default class Person {
x [Timmy] name: ["Tim" #%] e
hobby: |"cycling" %%

3 constructor (name, hobby) {
4 this.name = name
5 this.hobby = hobby;

}

€
8 sayHello() {

X © 2 = [Timny] this: [Timny 3 %]
9 4 console.log(I'm ${this.name} and I like ${this.hobby}");
% Q this.name: Timmy Tim
testPerson divaD
10 }
rever O {

%X © = = [Reverse Timmy| this: [Timmy % %)

14 }
15}

7 4 function testPerson() {

13 this.name = this.name.split("").reverse().join("");
% Q this.name: Reverse Timmy Tim miT
testPerson bavid divaD e

%X © = - [testPerson] this: [null 4%)

18 let name =
x
19 let aPerson = new Person(name, "debugging");
20 aPerson.reverseName();
% Q aPerson: testPerson ‘® {name: Dawid divaD, hobby: debugging} e
21 aPerson.sayHello();
22 |}
Ready

0
(6]

Figure 1: The editor implementing our tool design, showing a local example with the name “Timmy” (1), probes (3, 5) showing
results from two different examples (1, 4), a general replacement that replaces the request for user action with a fixed value

(6), and a probe showing changes on a complex object (7). [7]

modules instead of their unmodified counterparts. For every execu-
tion of a module, the system loaded these instrumented versions of
modules in addition to the already present base version of the mod-
ule. While the implementation is sufficient to enable the intended
live programming experience, the underlying approach does not
result in a clear architecture.

As the instrumentation of source code depending on the acti-
vated example is a system-wide behavioral variation, we propose to
use context-oriented programming (COP) as an underlying architec-
ture. COP provides a mechanism to structure behavioral variations
for one concern as a layer. This layer can then be activated for
the system and the modified behavior is active. Additionally, the
activation can be limited, for example, to a dynamic scope.

In this paper, we illustrate how COP can capture this system-wide
instrumentation in a modular way, resulting in an architecture de-
scribing only the essential parts of the system. Thereby, we describe
the implementation of the instrumentation for an example-based
live programming tool as a use case for COP in general. Further, the
instrumentation of source code also provides a use case for means
to express expression-level behavioral variations. We illustrate the
fit between the requirements for implementing example-based live
programming and the features of COP, by mapping the features
to COP concepts. Further, to demonstrate the simplicity of the im-
plementation resulting from our approach, we describe the details
of our implementation in Squeak/Smalltalk [3] using ContextS2 (a
successor of ContextS) [9].

Structure of this Paper

The following section 2 introduces the features of Babylonian Pro-
gramming and the resulting needs for dynamic behavior variation.
In section 3, we describe how we serve these needs using concepts
from COP. We go on to explain our implementation in section 4.
Based on the approach and our implementation, we discuss in sec-
tion 5 differences to the previous implementation and potential
future work for expression-level behavior instrumentation. Section
6 concludes the paper.

2 USE CASE AND RESULTING
REQUIREMENTS FOR COP

In order to illustrate the need for COP in example-based program-
ming tool support, we will describe the design of the Babylonian
Programming editor [7]. In the course of this description we will
point out whether and how each design element implies dynamic
behavioral variations.

The purpose of the tool is to provide live feedback through dis-
playing intermediate run-time state of the execution of an example
(see Figure 1). The displayed run-time state is updated whenever
the program or the example is changed. As the sole purpose of
the tool and the corresponding additions to the source code is to
provide better feedback to programmers, using the tool should not
alter the behavior of the system under development.

Implementing Babylonian/S by Putting Examples Into Contexts

The examples are explicitly specified by programmers. An ex-
ample is an invocation of a callable element of the language, for
example a function or a method. Consequently, an example provides
all information necessary to invoke the function or method. In par-
ticular, these are the arguments and, in case of a method, a receiver.
An example can have a name which describes the situation the ex-
ample captures, for example “the ideal case” or “malformed search
string”. The example is associated with the function or method
through a widget which is similar to an annotation. Finally, an
example can be activated which allows users to see intermediate
run-time state of the running example in the editor.

In order to specify which part of the run-time state should be
displayed at which point in time, programmers can add probes
to expressions in code [5]. A probe traces values of the selected
expression during the execution of an example. The corresponding
UI widget displays the value directly within the editor. As the
example-based tooling should not affect the actual system behavior,
probes should only be present during the execution of examples.

Programs being edited with the example-based editing tool might
contain side effects, calls of expensive functions, or functions which
require user interactions. In order to be able to still use examples
in such a program, programmers can replace these calls with other
expressions. This is similar to the way mock objects are used in unit
testing [6]. The original Babylonian Editor design only supported
global replacements, which applied to all examples. However, the
replacement expression might differ between examples. Thus, in the
implementation described in this paper, the example-based editor
will allow programmers to specify general and example-specific
replacements. These example-specific replacements require that
requirements can be scoped to the execution of an example.

Another feature of example-based programming tools is to allow
programmers to keep track of assumptions. This allows program-
mers to quickly check whether their hypotheses about the program
behavior holds or where it is violated. Assertions are probes with
an additional expression which is used to check the traced values.
When an assertion is violated, the program is not interrupted but
the violation is recorded and the violation is displayed to the user.
Again, the original Babylonian Editor did not support this, but the
implementation described in this paper will support them. As pro-
grammers might want to make very specific assertions, such as
the actual return value of a method call, assertions can be made
example-specific. This in turn means, as it did for replacements,
that assertions should be scoped to the example they refer to.

3 APPROACH: COP FOR BABYLONIAN
PROGRAMMING

Based on the described programming tool, we will now describe
how the implementation of each design element can generally
be mapped to COP concepts given an exploratory self-sustaining
programming environment based on a class-based object-oriented
programming language [2].

The instrumentation of source code for tracing the example
execution introduces behavioral variations on two levels into the
system (see Figure 2): method-level, expression-level.

COP’19, July 15, 2019, London, United Kingdom

Composed Run-
time Behavior

Base method Instrumentation Example Layers
Layer (method-level) (expression-level)

| Example 1

[[—I

| Example 2

Figure 2: An overview of our mapping of the required behav-
ior variations for instrumenting the source code onto layers.

At the method-level, each method that contains a probe, a re-
placement, or an assertion has to behave differently whenever it
is activated during the execution of an example. As this affects a
complete method, this variation can be expressed through a method
which replaces the complete source code of the original method
with the instrumented source code.

At the expression-level, instrumented parts of a method, for
example an expression wrapped in an example-specific replacement,
has to behave differently depending on the particular example being
executed right now. We specify the behavioral variations on the
expression-level through annotations embedded into the code

Analogous to the two granularities of behavioral variations, there
are also two kinds of layers: one layer for all general instrumen-
tations and one layer for each example. First of all, there is one
layer containing all probes added anywhere in the system and all
general replacements and assertions. These instrumentations form
a consistent behavioral variation, as, for example, a method without
any examples or probes might still contain a general replacement
which has to be activated for all examples. Additionally, there is
one layer for each example. This layer contains the replacements
and assertions related to that example.

When executing an example, the fact that we are executing an
example, and the specific example make up the context of this exe-
cution. We compose the general instrumentation layer and the layer
for the example based on this context information. The example is
executed in its own green thread. As we plan to implement this in
the context of an exploratory live programming environment, the
system under development might be running in parallel. In order
to keep the behavior of the system under development unaffected
from the activation of the instrumented version of the code base, we
use dynamic scopes to limit the activation of the layer composition
to the execution of the example.

4 IMPLEMENTATION

We have implemented the described approach in Squeak/Smalltalk [3]
using ContextS2 [9]. The implementation consists of three parts:
an extended compiler to enable the description of expression-level
behavioral variations, the mechanisms to activate and scope the
behavioral variations, and the tracing infrastructure. We will start
by explaining the way the examples and annotations are integrated
into the Smalltalk source code.

COP’19, July 15, 2019, London, United Kingdom Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus, and Robert Hirschfeld

Number>>addAndLog: aNumber
<exampleNamed: 'small number' self: #one given: 20>
<exampleNamed: 'large number' self: #one given: 94280292019202>
| result |
result := "<bpProbe>"self + aNumber'"</bpProbe>".
"<bpReplace with: [MockTranscript value showln: result] for: 'Number>>#incrementAndLog>>#withMockLogging'>"
"<bpReplace with: nil>"
Transcript showln: result
"</bpReplace>"
"</bpReplace>".
T"<bpAssert for: 'small number' that: [result = 21]>"result"</bpAssert>"

Number class>>#one

T

Listing 1: An annotated example method. The method contains two examples defined in pragmas (which are static annota-
tions): “small number” and “large number”. The method calculates the sum of the receiver and the argument, prints the result
on the Transcript (a kind of log), and returns the calculated sum. The method contains a probe, a general replacement, a
replacement for an example from another method, and an example-specific assertion.

BPSmalltalk <: OhmSmalltalk {
Expression := AnnotatedExpression | NormalExpression
NormalExpression = Operand (MessageChain CascadedMessagex)?
AnnotatedExpression = expressionAnnotationStart Expression expressionAnnotationEnd
AnnotationInformation = Operand KeywordMessage?

comment 1= ~"\UKT T\ (< gpy Y
expressionAnnotationStart = "\"<" spacex ~"/" spacex AnnotationInformation space* ">\""
expressionAnnotationEnd = "\"</" spacex Operand spacex ">\""

}

Listing 2: The modified Smalltalk grammar in Ohm syntax [10]. The BPSmalltalk grammar inherits the OhmSmalltalk gram-
mar and overrides the Expression rule of the OhmSmalltalk grammar. The NormalExpression rule is copied from the OhmsS-
malltalk grammar and the ANnotatedExpression rule accepts the new annotations.

Number>>addAndLog: aNumber
<layer: #bpInstrumented>
<exampleNamed: 'small number' self: #one given: 20 >
<exampleNamed: 'large number' self: #one given: 94280292019202 >
| result |
result := (self bpTrace: (self + aNumber) forProbe: 1 inContext: thisContext).
(self
bpReplace: [(self
bpReplace: [Transcript showln: result]
with: nil)]
with: [MockTranscript value showln: result] for: 'Number>>#incrementAndLog>>#withMockLogging').
T(self bpAssertAfter: [result] that: [result = 21]
forAssertion: 2 given: 'small number' inContext: thisContext)

Listing 3: The method source code after the rewriting added the instrumentation calls (square brackets denote block closures).
The pragma in the first line after the method selector denotes that this is the partial method for addAndLog: in the Babylonian
programming instrumentation layer.

4.1 Method Format

In the final editor, programmers should be able to interact with
examples and code instrumentations through graphical widgets
embedded in source code (see Figure 1). As these are not relevant
for the implementation using COP, we will focus on the transport
representation of the annotated source code (for an example method
see Listing 1).

receiver for the example execution. The subsequent keywords spec-
ify the arguments for the parameters of the method.

To enable programmers to express expression-level behavior
variation, we had to provide a mechanism to annotate sections
of source code. We decided for an embedded markup approach
instead of a stand-off markup approach, as this would allow us to
keep on using the existing Squeak/Smalltalk version control tool

Examples are expressed in Smalltalk pragmas (given in angle
brackets in Listing 1). The symbol passed as the value to the key-
word self: is the selector of the class method which creates the

set. In order to keep the source code downwards compatible, so it
can be loaded in a system lacking our extensions, we decided to
describe the annotations in comments. We currently provide three
annotations: bpProbe, bpReplace, bpAssert (see Listing 1).

Implementing Babylonian/S by Putting Examples Into Contexts

4.2 Compiler Extension

Before we are able to provide programmers with feedback on the
examples, we have to translate the annotated source code to an in-
strumented executable form. To introduce as little modifications to
the Squeak/Smalltalk base system as possible, we have implemented
our approach through rewriting the source code. The rewritten
source code is then sent to the standard Squeak/Smalltalk compiler.
Compiling an instrumented method results in two methods being
compiled: a base method which does not contain any trace of the
instrumentation in the resulting byte-code, and a partial method
which contains the instrumented behavior.

We have implemented the parsing of the annotated source code
through a specialized Smalltalk grammar in Ohm/S (see Listing 2).
To keep the syntax of the annotations familiar to Smalltalk program-
mers, we decided to allow programmers to specify them as Smalltalk
keyword messages. The grammar allows for nested annotations
but not for overlapping ones.

After parsing the source code, we re-write the code to a version
including instrumentation hooks which can be activated depending
on the context (see Listing 3). The major part of the rewriting
happens by generating new code for the nodes corresponding to
annotated expressions as defined in the grammar (see Listing 4).
During the rewriting, we also add a pragma which denotes that the
method belongs to the ContextS2 layer named bpInstrumented.

4.3 Activation and Scoping Mechanism

Paralleling the ContextS2 scoping protocol, we implemented a
method on the class BlockClosure which scopes the activation of
the instrumented method behavior to the execution of that block
(see Listing 5). The method takes an example as an argument and
creates a Tracer instance for that example. The method then acti-
vates the ContextS2 layer bpInstrumented and sets the dynamic
variable! BPActiveTracer to the newly created tracer during the
execution of the block to be traced. The scoping of example-specific
instrumentations is implemented in the tracer by checking for each
instrumentation call whether it applies to the current example
(as illustrated for replacements in Listing 6). We deactivate the
bpInstrumented layer for the execution of the BPActiveTracer
methods, as this enables us to use the instrumentation on its own
implementation.

5 DISCUSSION

Based on our experience with using COP for implementing the
instrumentation, we will discuss whether COP is a fit for the be-
havior we wanted to implement, how our approach compares to
an approach using global re-translation, and how expression-level
behavioral variations imply tool support.

5.1 COP for Example-based Live Programming

In general, our implementation shows that COP fits the require-
ments for an implementation of the tracing infrastructure of an
example-based live programming tool. By using COP, we reuse a

!The dynamic variable can have different values depending on the dynamic scope. [4]

COP’19, July 15, 2019, London, United Kingdom

well-understood mechanism for implementing the behavior adap-
tation. Consequently, we separate the infrastructure for managing
the behavior adaptation from the instrumentation implementation,
at least at the method level.

At the expression-level, we can not reuse the existing ContextS2
infrastructure, as it only allows the replacement of full methods in
layers. However, by implementing the expression-level behavior
adaptation using dynamic variables, the implementation remains
compact (see Listing 5 and Listing 6).

5.2 Comparison to Global Re-translation
Approach

Another way of implementing the instrumentation of source code
would be to do a global re-translation. This approach is used by the
original Babylonian Programming implementation in Javascript [7].
All modules including any instrumentation or examples are re-
translated and stored under a prefixed name. In a second step,
the import statements of the translated modules are re-written to
import the adapted version of modules if they are available. The
example invocations then activate the function or methods from
the adapted modules.

One major drawback of this approach is that indirect references
to instrumented modules can not be found. If there is an import
sequence from some adapted module A to some adapted module
C via an unmodified module B, the approach would not load the
adapted module C. The reason for this is that the algorithm does
not rewrite in module A the import for module B, as there is no
adapted version. This could be mitigated by a full re-translation of
the system which is not feasible, as this would not allow for short
feedback loops. Alternatively, this would require a static analysis of
the dependency chains which would then be used to determine all
modules whose module imports would need to be adapted. Besides
the increased complexity of the mechanism, this would also require
adapting and re-loading even more modules.

In comparison, our COP-based approach is less complex and
does not require additional logic to work for any module in the
system. However, as we introduce additional dispatch logic to all
instrumented methods, we introduce a runtime penalty in the base
system. The re-translation approach avoids this by not modifying
the base system behavior at all.

5.3 Tool Support for Expressing
Expression-Level Behavior Variation

The implementation of our approach illustrates that expression-
level behavioral variations require additional tool support to make
them usable. COP implementations working at the method-level
can separate the source code of a partial method from the source
code of the base method by defining the partial method as a new
method. The source code of the base method is thus not affected by
the related partial methods. In contrast, expression-level behavioral
variations have to be associated with expressions within the source
code in one of two ways: as stand-off markup or as embedded
markup. Both approaches require some degree of tool support.
When using stand-off markup, the annotations are not stored as
part of the source code itself but in some additional data structure.

COP’19, July 15, 2019, London, United Kingdom

Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus, and Robert Hirschfeld

BPSourceRewriter>>AnnotatedExpression: aNode startTag: startTag actualExpression: expression endTag: endTag

| annotation |
annotation := self value: startTag.
Tself

perform: ('{1}:with:' format: {annotation tag}) asSymbol

withArguments: {annotation

self value: expression}

BPSourceRewriter>>bpReplace: annotation with: originalExpressionSource

T(annotation includesKey: #for)
ifTrue: [

"(self bpReplace: [{13}] with: {2} for: {3})' format: {

originalExpressionSource
ifFalse: [

"(self bpReplace: [{13}] with: {2})' format: {

originalExpressionSource

annotation at: #with

annotation at: #with}]

annotation at: #for}]

Listing 4: The methods implementing the rewriting of the source code. The upper method dispatches to the individual rewrit-
ing methods for each kind of annotation. The lower method describes the rewriting for replacements in particular.

BlockClosure>>bpTraceForExample: anExample
| tracer |
tracer := BPTracer forExample: anExample.
#bpInstrumented withLayerDo: [
BPActiveTracer value: tracer during: self].
Ttracer trace

Listing 5: The method setting the scope for the tracing instrumentation. The call withLayerDo: activates the ContextS2 layer
and the call value:during: sets the tracer during the execution of the block closure.

Object>>bpReplace: aBlock with: anObject for: exampleName

TH#bpInstrumented withoutLayerDo: [

BPActiveTracer value replace: aBlock with: anObject for: exampleName]

BPTracer>>replace: originalCode with: replacementCode for: exampleName

Tself example exampleName = exampleName
ifTrue: replacementCode
ifFalse: originalCode

Listing 6: The methods implementing the activation of example-specific replacements.

The code editing tools have to be aware of the annotations in order
to take care of displaying them to the programmers.

When using embedded markup, the annotations of expressions
interrupt the original source code. Contrary to the original goal of
modularity, this re-introduces concerns different from the main con-
cern of the enclosing module. In the end, the embedded annotations
might worsen the comprehensibility of the original source code. To
mitigate this, tool support is needed to display the annotations in
an unobtrusive way, or remove them altogether on demand.

6 CONCLUSION

Babylonian programming requires the instrumentation of source
code at expression-level to provide immediate feedback on interme-
diate run-time state. The instrumentation is only relevant for the
execution of examples, and furthermore some instrumentations are
only relevant for certain examples. We used context-oriented pro-
gramming as a mechanism to implement the instrumentation for
Babylonian Programming without affecting the base system. The
implementation expresses general instrumentation through layered
methods and example-specific instrumentations through layered
expressions. The resulting architecture remains concise and might

serve as a blueprint for other example-based live programming
implementations.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of HPT's Research

School? and the Hasso Plattner Design Thinking Research Pro-

gram?

REFERENCES

[1] Jonathan Edwards. 2004. Example Centric Programming. In Companion to the
19th Annual ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA) 2004. ACM, New York, NY, USA, 124-124.
https://doi.org/10.1145/1028664.1028713

[2] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-Oriented
Programming. The Journal of Object Technology 7, 3 (2008), 125-125. https:
//doi.org/10.5381/jot.2008.7.3.a4

[3] Daniel Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself.
In Proceedings of OOPSLA 1997, Vol. 32. ACM, 318-326. https://doi.org/10.1145/
263698.263754

[4] Martin Léwis, Marcus Denker, and Oscar Nierstrasz. 2007. Context-Oriented
Programming: Beyond Layers. Proceedings of the 2007 international conference

2www.hpi.uni-potsdam.de/research_school

3www.hpi.de/en/research/design- thinking-research-program

https://doi.org/10.1145/1028664.1028713
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
www.hpi.uni-potsdam.de/research_school
www.hpi.de/en/research/design-thinking-research-program

Implementing Babylonian/S by Putting Examples Into Contexts

(5

G

[

— =

on Dynamic languages in conjunction with the 15th International Smalltalk Joint
Conference (ICDL 2007) (2007), 143-156. https://doi.org/10.1145/1352678.1352688
Sean McDirmid. 2013. Usable Live Programming. In Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward!) 2013. ACM, New York, NY, USA, 53-62.
https://doi.org/10.1145/2509578.2509585

Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-Style Programming: Design and Implementation of an Integra-
tion of Live Examples Into General-Purpose Source Code. The Art, Science, and
Engineering of Programming 3, 3 (2019). https://doi.org/10.22152/programming-

[10

COP’19, July 15, 2019, London, United Kingdom

journal.org/2019/3/9

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding: A Literature Study Com-
paring Perspectives on Liveness. The Art, Science, and Engineering of Programming
3,1(2018). https://doi.org/10.22152/programming-journal.org/2019/3/1
Marcel Taeumel, Tim Felgentreff, and Robert Hirschfeld. 2014. Applying Data-
Driven Tool Development to Context-Oriented Languages. Proceedings of 6th
International Workshop on Context-Oriented Programming (COP 2014) (2014).
https://doi.org/10.1145/2637066.2637067

Alessandro Warth, Patrick Dubroy, and Tony Garnock-Jones. 2016. Modular
Semantic Actions. Proceedings of the 12th Symposium on Dynamic Languages -
DLS 2016 (2016). https://doi.org/10.1145/2989225.2989231

https://doi.org/10.1145/1352678.1352688
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/2637066.2637067
https://doi.org/10.1145/2989225.2989231

	Abstract
	1 Introduction
	2 Use Case and Resulting Requirements for COP
	3 Approach: COP for Babylonian Programming
	4 Implementation
	4.1 Method Format
	4.2 Compiler Extension
	4.3 Activation and Scoping Mechanism

	5 Discussion
	5.1 COP for Example-based Live Programming
	5.2 Comparison to Global Re-translation Approach
	5.3 Tool Support for Expressing Expression-Level Behavior Variation

	6 Conclusion
	Acknowledgments
	References

