
Active Expressions
Basic Building Blocks for Reactive

Programming
Stefan Ramson and Robert Hirschfeld

Hasso Plattner Institute Potsdam
Software Architecture Group

http://www.hpi.uni-potsdam.de/swa/

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Programming: Manifesting a Mental
Model as Executable Code

2

Mental Model Computational ModelMental Gap

Coding

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Mental Model

Programming: Manifesting a Mental
Model as Executable Code

3

Computational ModelMental Gap

Coding
Analysis Style

for the game “Pac-Man”

Reactive Constraints
Declarations Imperative

Pane, Myers: Studying the Language and Structure
in Non-Programmers’ Solutions to Programming
Problems. Journal of Human-Computer Studies,
54:2, 2001

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

The Variety of Reactive Concepts

Signals
Implicit Lists

Events
Constraints

Dataflows
Streams

Implicit Layer Activation

Reactive Object Queries

4

Behaviors

Connectors

Actors

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

The Structure of Reactive
Programming Concepts

5

Change
Detection

Reactive
Behavior

Change Notification

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

The Structure of Reactive
Programming Concepts

6

Change
Detection

Reactive
Behavior

Change Notification

• Concept-specific
• Visible for application developer

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

The Structure of Reactive
Programming Concepts

7

Change
Detection

Reactive
Behavior

Change Notification

• Concept-specific
• Visible for application developer

• Conceptually exchangeable
• Hidden to application developer

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

taskA

Reactive Object Queries
Working Principle

8

let todos = select(Task,
t => !t.done()

);
taskA in todos; // true
// ...
taskA.finish();
taskA in todos; // false

taskB

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

taskA

Reactive Object Queries
Working Principle

9

let todos = select(Task,
t => !t.done()

);
taskA in todos; // true
// ...
taskA.finish();
taskA in todos; // false

todos

taskB

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

taskA

Reactive Object Queries
Working Principle

10

let todos = select(Task,
t => !t.done()

);
taskA in todos; // true
// ...
taskA.finish();
taskA in todos; // false

todos

taskB

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

todos

taskA

Reactive Object Queries
Working Principle

11

let todos = select(Task,
t => !t.done()

);
taskA in todos; // true
// ...
taskA.finish();
taskA in todos; // false

taskB

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Reactive Object Queries
Working Principle

12

let todos = select(Task,
t => !t.done()

);
taskA in todos; // true
// ...
taskA.finish();
taskA in todos; // false

todos

taskA taskB

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Reactive Object Queries
Working Principle

13

let todos = select(Task,
t => !t.done()

);
taskA in todos; // true
// ...
taskA.finish();
taskA in todos; // false

taskA

todos

taskB

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries
Reactive Behavior

14

if (condition(item))
group.add(item);

else
group.remove(item);

https://github.com/onsetsu/active-collection-prototype

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries
Change Detection

15

installListeners() {
expressionObserverStack.withElement(this,

() => ExpressionInterpreter.runAndReturn(
this.condition,
this.context,
this.item

)
);

}

https://github.com/onsetsu/active-collection-prototype

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries
Change Detection

16

installListeners() {
expressionObserverStack.withElement(this,

() => ExpressionInterpreter.runAndReturn(
this.condition,
this.context,
this.item

)
);

}

Dynamic Interpretation

https://github.com/onsetsu/active-collection-prototype

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries
Change Detection

17

installListeners() {
expressionObserverStack.withElement(this,

() => ExpressionInterpreter.runAndReturn(
this.condition,
this.context,
this.item

)
);

}

Dynamic Interpretation
Explicit Local Scope

https://github.com/onsetsu/active-collection-prototype

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries
Change Detection cont.

18

class ExpressionInterpreter extends Interpreter {
getProperty(obj, name) {
let object = obj.valueOf(),

prop = name.valueOf();

PropertyListener
.watchProperty(object, prop)
.addHandler(expressionObserverStack.top());

return super.getProperty(obj, name);
}

}

Adapt interpreter behavior

Install reflection hooks
Map hooks to expressions

Handle structural changes
https://github.com/onsetsu/active-collection-prototype

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries
Change Detection cont.

19

this.safeOldAccessors(obj, propName);

try {
obj.__defineGetter__(propName, () => this.propName);

} catch (e) { /* Firefox raises on Array.length */ }
let newGetter = obj.__lookupGetter__(propName);
if (!newGetter) { // Chrome silently ignores Array.length
return;

}

Interact with other concepts

Browser-specifics

https://github.com/onsetsu/active-collection-prototype

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries
Change Detection

Difficulties:
• Vertical slice through multiple layers of abstraction
• Detection mechanism is not designed for reuse
• Detection limited to object properties

20

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Synopsis

21

Goal: Ease the development of novel
reactive programming concepts

Approach: Identify and
exploit commonalities in
existing reactive concepts

Problem: Change detection as a
tedious but inevitable necessity
for practical implementations

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

State-based Reactive Concepts

A subset of reactive programming concepts

Criteria: Dependencies specified implicitly as
expressions over program state

Working Principle: The reactive framework identifies
and monitors relevant state

22

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

State-based Reactive Concepts

23

Signals signal s = expr Expression
(Signal definition)

Update signal
network

Constraints always: { expr } Expression
(Constraint expression)

Solve
constraints

Reactive Object Queries select(Class, expr) Expression
(Group condition)

Update group
membership

Implicit Layer Activation layer.when(expr) Expression
(Layer condition)

Update layer
composition

Two-way Data Bindings <tag value={{expr}}> Expression
(Model) Update view

Implicit Lists list.map(expr) Expression
(Base list, iterators)

Update
derived lists

Monitors Reaction

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Active Expressions
Approach

Reify identified commonality into a reusable concept

24

Signals Expression
(Signal definition)

Update signal
network

Constraints Expression
(Constraint expression)

Solve
constraints

Reactive Object Queries Expression
(Group condition)

Update group
membership… ……

Implicit lifting

Alternate VM

Reflection
…

Monitors ReactionImplementation

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Active Expressions
Approach

Reify identified commonality into a reusable concept

25

Signals Expression
(Signal definition)

Update signal
network

Constraints Expression
(Constraint expression)

Solve
constraints

Reactive Object Queries Expression
(Group condition)

Update group
membership… ……

Implicit lifting

Alternate VM

Reflection
…

Monitors ReactionImplementation

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Active Expressions
Design Perimeters

1. Ease change detection by hiding technology-
specific implementation details

2. Support a variety of reactive behavior

3. Integrate with object-oriented environments

26

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Active Expressions
Design

Active Expressions as a state-based reactive concept

27

ReactionChange Detection
Expression

Change
Detection Notify

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Change
Detection

Reaction

Active Expressions
Design – Change Detection

28

Expression

Notify

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Change
Detection

Reaction

Active Expressions
Design – Change Detection

29

Expression

What to
monitor?

Notify

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Change
Detection

Reaction

Active Expressions
Design – Change Detection

30

Expression

What to
monitor?

Notify

signal s = expr; aexpr(() => expr)

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Change
Detection

Active Expressions
Design – Reactive Behavior

31

Expression

What to
monitor?

aexpr(() => expr)

Behavior

Reaction as
Variation Point

Notify

signal s = expr;

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Change
Detection

Active Expressions
Design – Reactive Behavior

32

Expression

What to
monitor?

aexpr(() => expr)

Behavior

Reaction as
Variation Point

How to
react?

Notify

signal s = expr;

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Change
Detection

Active Expressions
Design – Reactive Behavior

33

Expression

What to
monitor?

aexpr(() => expr)
.onChange(val => s = val)

Behavior

Reaction as
Variation Point

How to
react?

Notify

signal s = expr;

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Change
Detection

Active Expressions
Design

34

Expression

What to
monitor?

Behavior

Reaction as
Variation Point

How to
react?

Notify

let s = aexpr(() => expr)
.onChange(val => s = val)
.now();

signal s = expr;

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Active Expressions
Design

35

Change
Detection

Expression

What to
monitor?

Behavior

Reaction as
Variation Point

How to
react?

Notify

aexpr(expr).onChange(behavior)

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Implementing Reactive Object Queries

36

onNewInstance(item) {
aexpr(() => condition(item))
.onBecomeTrue(() => group.add(item))
.onBecomeFalse(() => group.remove(item));

}

group = select(Class, condition);

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Applicability of Active Expressions

37

Signals
Linear Constraints
Reactive Object Queries
Implicit Layer Activation

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Effects on Code Complexity

38

1585

976

733 2087

Signals
Linear Constraints
Reactive Object Queries

122
291

2075

150

17
324 348
124

Reference Implementation Using Active Expressions

Implicit Layer Activation 963 22
Code complexity of reactive concept implementations in AST nodes Detection

Reaction

Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Summary

39

Goal: Ease the development of novel
reactive programming concepts

Approach: Identify and
exploit commonalities in
existing reactive concepts

Problem: Change detection as a
tedious but inevitable necessity
for practical implementations

