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The Variety of Reactive Concepts

Signals
Implicit Lists

Events
Constraints

Dataflows
Streams

Implicit Layer Activation

Reactive Object Queries
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The Structure of Reactive
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Change 
Detection

Reactive 
Behavior

Change Notification

• Concept-specific
• Visible for application developer

• Conceptually exchangeable
• Hidden to application developer
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Working Principle
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let todos = select(Task,
t => !t.done()

);
taskA in todos; // true
// ...
taskA.finish();
taskA in todos; // false

taskB
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Implementing Reactive Object Queries
Reactive Behavior
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if (condition(item))
group.add(item);

else
group.remove(item);

https://github.com/onsetsu/active-collection-prototype
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installListeners() {
expressionObserverStack.withElement(this, 

() => ExpressionInterpreter.runAndReturn(
this.condition, 
this.context, 
this.item

)
);

}

https://github.com/onsetsu/active-collection-prototype
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installListeners() {
expressionObserverStack.withElement(this, 

() => ExpressionInterpreter.runAndReturn(
this.condition, 
this.context, 
this.item

)
);

}

Dynamic Interpretation
Explicit Local Scope

https://github.com/onsetsu/active-collection-prototype
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Implementing Reactive Object Queries
Change Detection cont.
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class ExpressionInterpreter extends Interpreter {
getProperty(obj, name) {
let object = obj.valueOf(),

prop = name.valueOf();

PropertyListener
.watchProperty(object, prop)
.addHandler(expressionObserverStack.top());

return super.getProperty(obj, name);
}

}

Adapt interpreter behavior

Install reflection hooks
Map hooks to expressions

Handle structural changes
https://github.com/onsetsu/active-collection-prototype
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this.safeOldAccessors(obj, propName);

try {
obj.__defineGetter__(propName, () => this.propName);

} catch (e) { /* Firefox raises on Array.length */ }
let newGetter = obj.__lookupGetter__(propName);
if (!newGetter) { // Chrome silently ignores Array.length
return;

}

Interact with other concepts

Browser-specifics

https://github.com/onsetsu/active-collection-prototype
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Implementing Reactive Object Queries
Change Detection

Difficulties:
• Vertical slice through multiple layers of abstraction
• Detection mechanism is not designed for reuse
• Detection limited to object properties

20
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Goal: Ease the development of novel 
reactive programming concepts

Approach: Identify and 
exploit commonalities in 
existing reactive concepts

Problem: Change detection as a 
tedious but inevitable necessity
for practical implementations
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State-based Reactive Concepts

A subset of reactive programming concepts

Criteria: Dependencies specified implicitly as 
expressions over program state

Working Principle: The reactive framework identifies 
and monitors relevant state

22
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Signals signal s = expr Expression
(Signal definition)

Update signal 
network

Constraints always: { expr } Expression
(Constraint expression)

Solve 
constraints

Reactive Object Queries select(Class, expr) Expression
(Group condition)

Update group 
membership

Implicit Layer Activation layer.when(expr) Expression
(Layer condition)

Update layer 
composition

Two-way Data Bindings <tag value={{expr}}> Expression
(Model) Update view

Implicit Lists list.map(expr) Expression
(Base list, iterators)

Update 
derived lists

Monitors Reaction
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Active Expressions
Approach

Reify identified commonality into a reusable concept
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Active Expressions
Design Perimeters

1. Ease change detection by hiding technology-
specific implementation details

2. Support a variety of reactive behavior

3. Integrate with object-oriented environments

26
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Active Expressions
Design

Active Expressions as a state-based reactive concept
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ReactionChange Detection
Expression

Change 
Detection Notify
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Expression

What to 
monitor?

Notify

signal s = expr; aexpr(() => expr)
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Expression
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monitor?

aexpr(() => expr)

Behavior

Reaction as 
Variation Point

Notify

signal s = expr;
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Expression

What to 
monitor?

aexpr(() => expr)
.onChange(val => s = val)

Behavior

Reaction as 
Variation Point

How to 
react?

Notify

signal s = expr;
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Expression

What to 
monitor?

Behavior

Reaction as 
Variation Point

How to 
react?

Notify

let s = aexpr(() => expr)
.onChange(val => s = val)
.now();

signal s = expr;
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Change 
Detection

Expression

What to 
monitor?

Behavior

Reaction as 
Variation Point

How to 
react?

Notify

aexpr(expr).onChange(behavior)
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Implementing Reactive Object Queries
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onNewInstance(item) {
aexpr(() => condition(item))
.onBecomeTrue(() => group.add(item))
.onBecomeFalse(() => group.remove(item));

}

group = select(Class, condition);
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Applicability of Active Expressions
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Signals
Linear Constraints
Reactive Object Queries
Implicit Layer Activation



Stefan Ramson, Robert Hirschfeld | Software Architecture Group | Hasso Plattner Institute | 2017.04.06

Effects on Code Complexity
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Summary
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Goal: Ease the development of novel 
reactive programming concepts

Approach: Identify and 
exploit commonalities in 
existing reactive concepts

Problem: Change detection as a 
tedious but inevitable necessity
for practical implementations


