
Zone-based Layer Activation

Stefan Ramson, Jens Lincke, Harumi Watanabe, and Robert Hirschfeld

Software Architecture Group, Hasso Plattner Institute

Department of
Embedded
Software, Tokai
University,
Japan

Context-specific Behavior Adaptations across
Logically-connected Asynchronous Operations

Workshop on Context-Oriented Programming

and Advanced Modularity | 21 July 2020

Motivational Example
GitHub Application

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 2

Motivational Example
GitHub Application

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 3

 const repos = await GitHub.repos()

Motivational Example
GitHub Application

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 4

 const repos = await GitHub.repos()

 for (let repo of repos) {

Motivational Example
GitHub Application

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 5

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

Motivational Example
GitHub Application

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 6

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

Motivational Example
GitHub Application

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 7

async function displayRepos() {

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

displayRepos()

code before

code after

GitHub.repos()

for loop

GitHub Repositories

username Fetch Repositories

only public repositories

Motivational Example
Behavior Adaptation: Accessing Private Repositories

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

» provide an option to include private repositories

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 8

code before

code after

GitHub.repos()

for loop
async function displayRepos() {

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

enhances API calls with
proper authentication

adapts

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

» provide an option to include private repositories

Motivational Example
Intended Behavior Adaptation (with Authentication)

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 9

async function displayRepos() {

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

 AuthLayer

code before

code after

GitHub.repos()

for loop

enhances API calls with
proper authentication

adapts

Motivational Example
Intended Behavior Adaptation (Dynamic Extent)

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 10

async function displayRepos() {

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

withLayers([AuthLayer], displayRepos)

code before

code after

GitHub.repos()

for loop

withLayers AuthLayer

automatic deactivation

GitHub Repositories

username Fetch Repositories

behavior adaptation

Motivational Example
Actual Behavior (Dynamic Extent)

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 11

async function displayRepos() {

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

withLayers([AuthLayer], displayRepos)

code before

code after

GitHub.repos()
withLayers AuthLayer

early deactivation?
for loop

AuthLayer
not active

GitHub Repositories

username Fetch Repositories

authentication error

await

2nd part of function

postpone execution

resume execution

Motivational Example
Asynchronous Execution

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 12

code before

code after

1st part of function

async function displayRepos() {

 const repos = await GitHub.repos()

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

withLayers([AuthLayer], displayRepos)

async function displayRepos() {

 GitHub.repos()

await

for loop

send request to server

receive response

Motivational Example
Asynchronous Execution

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 13

breaks the function
into multiple pieces

code before

code after

GitHub.repos()

 const repos =

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

withLayers([AuthLayer], displayRepos)

 await

postponed until
receiving a response

executed immediately

for loop

Motivational Example
Asynchronous Execution

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 14

code before

code after

GitHub.repos()

async function displayRepos() {

 GitHub.repos()

breaks the function
into multiple pieces

 const repos =

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

withLayers([AuthLayer], displayRepos)

 await

postponed until
receiving a response

executed immediately
withLayers AuthLayer

for loop

Motivational Example
Asynchronous Execution

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 15

code before

code after

GitHub.repos()

async function displayRepos() {

 GitHub.repos()

breaks the function
into multiple pieces

 const repos =

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

withLayers([AuthLayer], displayRepos)

 await

postponed until
receiving a response

executed immediately
withLayers AuthLayer

early deactivation

for loop

Motivational Example
Asynchronous Execution

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 16

code before

code after

GitHub.repos()

async function displayRepos() {

 GitHub.repos()

breaks the function
into multiple pieces

 const repos =

 for (let repo of repos) {

 const commits = await repo.commits()

 display(repo, commits.last)

 }

}

withLayers([AuthLayer], displayRepos)

 await

postponed until
receiving a response

executed immediately
withLayers AuthLayer

early deactivation

AuthLayer not active

Problem Statement

Problem:

» the safe semantics of the dynamic extent

activation means cannot be guarantied for

asynchronous execution models

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 17

withLayers

code before

code after
await

early deactivation

unexpected
layer composition

Problem Statement

Problem:

» the safe semantics of the dynamic extent

activation means cannot be guarantied for

asynchronous execution models

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 18

logically-
connected

code before

code after

withLayers

Goals:

» expand the notion of dynamic extent to all asynchronous operations

logically-connected to the given block

» provide a consistent layer composition across all these operations

asynchronous
dynamic extent

Asynchronous Dynamic Extent

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 19

Background: Zones

» a persistent context across logically-connected asynchronous operations

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 20

code after

for loop

code before

GitHub.repos()

<root> Zone

displayRepos()

Background: Zones

» a persistent context across logically-connected asynchronous operations

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 21

code after

for loop

code before

GitHub.repos()

<root> Zone

runZoned(displayRepos)

Zone 1

Background: Zones

» a persistent context across logically-connected asynchronous operations

» code scheduled within a zone is executed in that zone

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 22

code after

for loop

code before

GitHub.repos()

<root> Zone

runZoned(displayRepos)

Zone 1

Background: Zones
Zone Properties

similar to thread-local storage and dynamic scope

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 23

runZoned(displayRepos)

class Github {

 static async repos () {

const json = await this.api('/repos')

return json.map(r => new Repository(r))

 }

 static async api (path) {

 const url = GH_API + user + path

const response = await fetch(url)

return response.json()

 }

}

code after

for loop

code before

GitHub.repos()

<root> Zone

Zone 1

Background: Zones
Zone Properties

similar to thread-local storage and dynamic scope

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 24

runZoned(displayRepos, { user: 'onsetsu' })

runZoned(displayRepos, { user: 'jenslincke' })

class Github {

 static async repos () {

const json = await this.api('/repos')

return json.map(r => new Repository(r))

 }

 static async api (path) {

 const url = GH_API + Zone.current.user + path

const response = await fetch(url)

return response.json()

 }

}

code afterfor loop

code before

GitHub.repos()

GitHub.repos()

for loop

Zone 1

Zone 2

user: 'jenslincke'

<root> Zone

user: 'onsetsu'

Background: Zones
Life-cycle Callbacks

reflection on the execution of asynchronous tasks

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 25

code after

code before<root> Zone

onEnterrunZoned(displayRepos, {

 onEnter() { […] },
 onExit() { […] },
 onError() { […] }
})

onExit

onExit

onEnter

Zone 1
GitHub.repos()

for loop

Zone-based Layer Activation

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 26

» Goal

› consistent layer composition across asynchronous operations

Zone-based Layer Activation

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 27

code after

for loop

code before

withLayers
GitHub.repos()

layer composition

Zone-based Layer Activation

» Intuition

› store a layer composition per zone

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 28

code after

for loop

code before<root> Zone

Zone 1

GitHub.repos()

layers: layer composition

withLayers

store layers

Zone-based Layer Activation

» Intuition

› store a layer composition per zone

› restore layer composition when re-entering a zone

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 29

code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos()

layers: layer composition

withLayers

replay layers

store layers

other frame

Zone-based Layer Activation
Layerstack

» dynamic extent activates layers

based on local execution context

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 31

withoutLayers([CacheLayer], […])

other frame

other frame

withLayers([AuthLayer], […])

withLayers([CacheLayer], […])

other frame

call stack

code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos

layers: layer composition

withLayers

replay layers

store layers

other frame

Zone-based Layer Activation
Layerstack

» dynamic extent activates layers

based on local execution context

» only store layerstack as context

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 32

withoutLayers([CacheLayer], […])

other frame

other frame

withLayers([AuthLayer], […])

withLayers([CacheLayer], […])

other frame

[

 { withLayers: [CacheLayer] },

 { withLayers: [AuthLayer] },

 { withoutLayers: [CacheLayer] },

]

call stack layerstack

code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos

layers: layerstack

withLayers

replay layers

store layers

Zone-based Layer Activation
Replaying a Layerstack

» dedicated scheme to handle

layer life-cycle callbacks

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 34

[
 { withLayers: [L0] },
 { withoutLayers: [L1] },
 { withLayers: [L2] },
]

[
 { withLayers: [L0] },
 { withLayers: [L3] },
]

.replay()

1
w/ L0

w/o L1 w/ L3

w/ L2

w/ L0
2

w/ L0

w/o L1 w/ L3

w/ L2

add to LayerStackremove from LayerStack

no change 3
w/ L0

w/o L1 w/ L3

w/ L2

L3 onActivateL2 onDeactivate

L1 onActivate

1st 2nd

code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos

layers: layerstack

withLayers

replay layers

store layers

Zone-based Layer Activation by Example

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 35

withLayers AuthLayer

withoutLayers CacheLayer

GitHub.repos()

for loop

CacheLayer.beGlobal()

Zo
n

e
1

Zo
n

e
2

<r
o

o
t>

Zo
n

e
1

Zo
n

e
2

cu
rr

en
t

zo
n

e

C
ac

h
e

La
ye

r
gl

o
b

al
 la

ye
rs

A
u

th
La

ye
r

la
ye

r
co

m
p

o
si

ti
o

n
A

u
th

La
ye

r

w
it

h
 A

u
th

La
ye

r
la

ye
r

st
ac

k
w

it
h

o
u

t
C

ac
h

eL
ay

er

w
it

h
 A

u
th

La
ye

r
w

it
h

o
u

t
C

ac
h

eL
ay

er

enter

leave

enter

enter

leave

leave

push

resume execution

<r
o

o
t>

pop

push

pop

push

pop

withLayers([AuthLayer], () =>

 withoutLayers([CacheLayer],

 displayRepos

)

)

CacheLayer.beGlobal()

code after

code before<root> Zone

layers: [

 { with: [AuthLayer] },

 { without: [CacheLayer] }

]

Zone 2

onEnter

Zone 1

push

pop

GitHub.repos()

for loop

global CacheLayer

Implementation

» extension to ContextJS

» extended Dexie.Promise with

zone life-cycle callbacks

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 37

life example: https://onsetsu.github.io/area51/experiments/github-access.html

library area51
https://github.com/onsetsu/area51

https://github.com/LivelyKernel/ContextJS
https://dexie.org/docs/Promise/Promise
https://onsetsu.github.io/area51/experiments/github-access.html
https://github.com/onsetsu/area51

Asynchronous Programming beyond async/await

» asynchronous mechanisms:

› async/await keyword

› timeouts

› animations

› event handlers

› …

» zones apply to all

› subject to Zone-based Layer Activation

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 39

Summary

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 40

Problem Notion of dynamic extent limited to
synchronous parts of code fragments

Summary

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 41

Problem

Approach

Notion of dynamic extent limited to
synchronous parts of code fragments

Use zones to intercept asynchronous
execution and manipulate layer
composition accordingly

Summary

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 42

Problem

Approach

Impact

Notion of dynamic extent limited to
synchronous parts of code fragments

Use zones to intercept asynchronous
execution and manipulate layer
composition accordingly

Consistent layer composition across
logically-connected asynchronous
operations

	Default Section
	Slide 1: Zone-based Layer Activation

	Motivation
	Slide 2: Motivational Example GitHub Application
	Slide 3: Motivational Example GitHub Application
	Slide 4: Motivational Example GitHub Application
	Slide 5: Motivational Example GitHub Application
	Slide 6: Motivational Example GitHub Application
	Slide 7: Motivational Example GitHub Application
	Slide 8: Motivational Example Behavior Adaptation: Accessing Private Repositories
	Slide 9: Motivational Example Intended Behavior Adaptation (with Authentication)
	Slide 10: Motivational Example Intended Behavior Adaptation (Dynamic Extent)
	Slide 11: Motivational Example Actual Behavior (Dynamic Extent)
	Slide 12: Motivational Example Asynchronous Execution
	Slide 13: Motivational Example Asynchronous Execution
	Slide 14: Motivational Example Asynchronous Execution
	Slide 15: Motivational Example Asynchronous Execution
	Slide 16: Motivational Example Asynchronous Execution
	Slide 17: Problem Statement
	Slide 18: Problem Statement

	Background: Zones
	Slide 19: Asynchronous Dynamic Extent
	Slide 20: Background: Zones
	Slide 21: Background: Zones
	Slide 22: Background: Zones
	Slide 23: Background: Zones Zone Properties
	Slide 24: Background: Zones Zone Properties
	Slide 25: Background: Zones Life-cycle Callbacks

	Approach
	Slide 26: Zone-based Layer Activation
	Slide 27: Zone-based Layer Activation
	Slide 28: Zone-based Layer Activation
	Slide 29: Zone-based Layer Activation
	Slide 31: Zone-based Layer Activation Layerstack
	Slide 32: Zone-based Layer Activation Layerstack
	Slide 34: Zone-based Layer Activation Replaying a Layerstack
	Slide 35: Zone-based Layer Activation by Example

	Conclusion
	Slide 37: Implementation
	Slide 39: Asynchronous Programming beyond async/await
	Slide 40: Summary
	Slide 41: Summary
	Slide 42: Summary

