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Motivational Example
GitHub Application

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit
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  const repos = await GitHub.repos()
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  const repos = await GitHub.repos()

  for (let repo of repos) {
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  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()
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  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }



Motivational Example
GitHub Application

» display the most recently changed repositories of a user
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async function displayRepos() {

  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

displayRepos()

code before

code after

GitHub.repos()

for loop

GitHub Repositories

username Fetch Repositories

only public repositories



Motivational Example
Behavior Adaptation: Accessing Private Repositories

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

» provide an option to include private repositories

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 8

code before

code after

GitHub.repos()

for loop
async function displayRepos() {

  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}



enhances API calls with 
proper authentication

adapts

» display the most recently changed repositories of a user

» including timestamp and message of the latest commit

» provide an option to include private repositories

Motivational Example
Intended Behavior Adaptation (with Authentication)
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async function displayRepos() {

  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

            AuthLayer

code before

code after

GitHub.repos()

for loop



enhances API calls with 
proper authentication

adapts

Motivational Example
Intended Behavior Adaptation (Dynamic Extent)

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 10

async function displayRepos() {

  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

withLayers([AuthLayer], displayRepos)

code before

code after

GitHub.repos()

for loop

withLayers AuthLayer

automatic deactivation

GitHub Repositories

username Fetch Repositories

behavior adaptation



Motivational Example
Actual Behavior (Dynamic Extent)
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async function displayRepos() {

  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

withLayers([AuthLayer], displayRepos)

code before

code after

GitHub.repos()
withLayers AuthLayer

early deactivation?
for loop

AuthLayer 
not active

GitHub Repositories

username Fetch Repositories

authentication error



await

2nd part of function

postpone execution

resume execution

Motivational Example
Asynchronous Execution
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code before

code after

1st part of function

async function displayRepos() {

  const repos = await GitHub.repos()

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

withLayers([AuthLayer], displayRepos)



async function displayRepos() {

                      GitHub.repos()

await

for loop

send request to server

receive response

Motivational Example
Asynchronous Execution
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breaks the function 
into multiple pieces

code before

code after

GitHub.repos()

  const repos =

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

withLayers([AuthLayer], displayRepos)

             await

postponed until 
receiving a response

executed immediately



for loop

Motivational Example
Asynchronous Execution
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code before

code after

GitHub.repos()

async function displayRepos() {

                      GitHub.repos()

breaks the function 
into multiple pieces

  const repos =

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

withLayers([AuthLayer], displayRepos)

             await

postponed until 
receiving a response

executed immediately
withLayers AuthLayer



for loop

Motivational Example
Asynchronous Execution
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code before

code after

GitHub.repos()

async function displayRepos() {

                      GitHub.repos()

breaks the function 
into multiple pieces

  const repos =

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

withLayers([AuthLayer], displayRepos)

             await

postponed until 
receiving a response

executed immediately
withLayers AuthLayer

early deactivation



for loop

Motivational Example
Asynchronous Execution
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code before

code after

GitHub.repos()

async function displayRepos() {

                      GitHub.repos()

breaks the function 
into multiple pieces

  const repos =

  for (let repo of repos) {

    const commits = await repo.commits()

    display(repo, commits.last)

  }

}

withLayers([AuthLayer], displayRepos)

             await

postponed until 
receiving a response

executed immediately
withLayers AuthLayer

early deactivation

AuthLayer not active



Problem Statement

Problem: 

» the safe semantics of the dynamic extent 

activation means cannot be guarantied for 

asynchronous execution models
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withLayers

code before

code after
await

early deactivation

unexpected 
layer composition



Problem Statement

Problem: 

» the safe semantics of the dynamic extent 

activation means cannot be guarantied for 

asynchronous execution models
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logically-
connected

code before

code after

withLayers

Goals:

» expand the notion of dynamic extent to all asynchronous operations 

logically-connected to the given block 

» provide a consistent layer composition across all these operations

asynchronous 
dynamic extent



Asynchronous Dynamic Extent
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Background: Zones

» a persistent context across logically-connected asynchronous operations
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code after

for loop

code before

GitHub.repos()

<root> Zone

displayRepos()



Background: Zones

» a persistent context across logically-connected asynchronous operations
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code after

for loop

code before

GitHub.repos()

<root> Zone

runZoned(displayRepos)

Zone 1



Background: Zones

» a persistent context across logically-connected asynchronous operations

» code scheduled within a zone is executed in that zone
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code after

for loop

code before

GitHub.repos()

<root> Zone

runZoned(displayRepos)

Zone 1



Background: Zones
Zone Properties

similar to thread-local storage and dynamic scope
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runZoned(displayRepos)

class Github {

  static async repos () {

const json = await this.api('/repos')

return json.map(r => new Repository(r))

  }

  static async api (path) {

    const url = GH_API + user + path

const response = await fetch(url)

return response.json()

  }

}

code after

for loop

code before

GitHub.repos()

<root> Zone

Zone 1



Background: Zones
Zone Properties

similar to thread-local storage and dynamic scope
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runZoned(displayRepos, { user: 'onsetsu' })

runZoned(displayRepos, { user: 'jenslincke' })

class Github {

  static async repos () {

const json = await this.api('/repos')

return json.map(r => new Repository(r))

  }

  static async api (path) {

    const url = GH_API + Zone.current.user + path

const response = await fetch(url)

return response.json()

  }

}

code afterfor loop

code before

GitHub.repos()

GitHub.repos()

for loop

Zone 1

Zone 2

user: 'jenslincke'

<root> Zone

user: 'onsetsu'



Background: Zones
Life-cycle Callbacks

reflection on the execution of asynchronous tasks
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code after

code before<root> Zone

onEnterrunZoned(displayRepos, {

  onEnter() { […] },
  onExit() { […] },
  onError() { […] }
})

onExit

onExit

onEnter

Zone 1
GitHub.repos()

for loop



Zone-based Layer Activation

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 26



» Goal

› consistent layer composition across asynchronous operations

Zone-based Layer Activation
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code after

for loop

code before

withLayers
GitHub.repos()

layer composition



Zone-based Layer Activation

» Intuition

› store a layer composition per zone
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code after

for loop

code before<root> Zone

Zone 1

GitHub.repos()

layers: layer composition

withLayers

store layers



Zone-based Layer Activation

» Intuition

› store a layer composition per zone

› restore layer composition when re-entering a zone
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code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos()

layers: layer composition

withLayers

replay layers

store layers



other frame

Zone-based Layer Activation
Layerstack

» dynamic extent activates layers 

based on local execution context

2020-07-21 Stefan Ramson | Hasso Plattner Institute, Software Architecture Group 31

withoutLayers([CacheLayer], […])

other frame

other frame

withLayers([AuthLayer], […])

withLayers([CacheLayer], […])

other frame

call stack

code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos

layers: layer composition

withLayers

replay layers

store layers



other frame

Zone-based Layer Activation
Layerstack

» dynamic extent activates layers 

based on local execution context

» only store layerstack as context
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withoutLayers([CacheLayer], […])

other frame

other frame

withLayers([AuthLayer], […])

withLayers([CacheLayer], […])

other frame

[

  { withLayers: [CacheLayer] },

  { withLayers: [AuthLayer] },

  { withoutLayers: [CacheLayer] },

]

call stack layerstack

code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos

layers: layerstack

withLayers

replay layers

store layers



Zone-based Layer Activation
Replaying a Layerstack

» dedicated scheme to handle 

layer life-cycle callbacks
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[
  { withLayers: [L0] },
  { withoutLayers: [L1] },
  { withLayers: [L2] },
]

[
  { withLayers: [L0] },
  { withLayers: [L3] },
]

.replay( )

1
w/ L0

w/o L1 w/ L3

w/ L2

w/ L0
2

w/ L0

w/o L1 w/ L3

w/ L2

add to LayerStackremove from LayerStack

no change 3
w/ L0

w/o L1 w/ L3

w/ L2

L3 onActivateL2 onDeactivate

L1 onActivate

1st 2nd

code after

for loop

code before<root> Zone

Zone 1

onEnter

GitHub.repos

layers: layerstack

withLayers

replay layers

store layers



Zone-based Layer Activation by Example
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withLayers AuthLayer

withoutLayers CacheLayer

GitHub.repos()

for loop

CacheLayer.beGlobal()
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leave

enter
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leave

leave

push

resume execution

<r
o

o
t>

pop

push

pop

push

pop

withLayers([AuthLayer], () =>

  withoutLayers([CacheLayer],

    displayRepos

  )

)

CacheLayer.beGlobal()

code after

code before<root> Zone

layers: [

  { with: [AuthLayer] },

  { without: [CacheLayer] }

]

Zone 2

onEnter

Zone 1

push

pop

GitHub.repos()

for loop

global CacheLayer



Implementation

» extension to ContextJS

» extended Dexie.Promise with 

zone life-cycle callbacks
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life example: https://onsetsu.github.io/area51/experiments/github-access.html

library area51
https://github.com/onsetsu/area51

https://github.com/LivelyKernel/ContextJS
https://dexie.org/docs/Promise/Promise
https://onsetsu.github.io/area51/experiments/github-access.html
https://github.com/onsetsu/area51


Asynchronous Programming beyond async/await

» asynchronous mechanisms:

› async/await keyword

› timeouts

› animations

› event handlers

› …

» zones apply to all

› subject to Zone-based Layer Activation
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Summary
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Problem Notion of dynamic extent limited to
synchronous parts of code fragments



Summary
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Problem

Approach

Notion of dynamic extent limited to
synchronous parts of code fragments

Use zones to intercept asynchronous
execution and manipulate layer
composition accordingly



Summary
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Problem

Approach

Impact

Notion of dynamic extent limited to
synchronous parts of code fragments

Use zones to intercept asynchronous
execution and manipulate layer
composition accordingly

Consistent layer composition across
logically-connected asynchronous
operations
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